Skip to main content
Log in

Optimal proportioning of iron ore in sintering process based on improved multi-objective beluga whale optimisation algorithm

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Proportioning is an important part of sintering, as it affects the cost of sintering and the quality of sintered ore. To address the problems posed by the complex raw material information and numerous constraints in the sintering process, a multi-objective optimisation model for sintering proportioning was established, which takes the proportioning cost and TFe as the optimisation objectives. Additionally, an improved multi-objective beluga whale optimisation (IMOBWO) algorithm was proposed to solve the nonlinear, multi-constrained multi-objective optimisation problems. The algorithm uses the constrained non-dominance criterion to deal with the constraint problem in the model. Moreover, the algorithm employs an opposite learning strategy and a population guidance mechanism based on angular competition and two-population competition strategy to enhance convergence and population diversity. The actual proportioning of a steel plant indicates that the IMOBWO algorithm applied to the ore proportioning process has good convergence and obtains the uniformly distributed Pareto front. Meanwhile, compared with the actual proportioning scheme, the proportioning cost is reduced by 4.3361 ¥/t, and the TFe content in the mixture is increased by 0.0367% in the optimal compromise solution. Therefore, the proposed method effectively balances the cost and total iron, facilitating the comprehensive utilisation of sintered iron ore resources while ensuring quality assurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Li, H. Zhou, J. Huang, Z.W. Zhang, X.F. She, J.F. Wang, S.L. Wu, M.Y. Kou, J. Iron Steel Res. Int. 30 (2023) 1675–1686.

    Article  CAS  Google Scholar 

  2. H.Y. Li, X.P. Bu, X.J. Liu, X. Li, H.W. Li, F.L. Liu, Q. Lyu, ISIJ Int. 61 (2021) 108–118.

    Article  CAS  Google Scholar 

  3. S.H. Peng, H. Liu, Z.Z. Sun, C.W. Li, Y.L. Qin, W.Q. Liu, G. Wang, J. Iron Steel Res. Int. 30 (2023) 2122–2132.

    Article  CAS  Google Scholar 

  4. M. Wu, W. Cao, X. Chen, J. She, in: Intelligent Optimization and Control of Complex Metallurgical Processes Vol. 3, Springer, Singapore, 2020, pp. 33–82.

    Book  Google Scholar 

  5. D.L. Zheng, Z.J. Zhao, W. Fang, T. Fang, J. Univ. Sci. Technol. Beijing 7 (2000) No. 4, 273–276.

    CAS  Google Scholar 

  6. B. Li, W.S. Liu, Control and Decision 37 (2022) 1389–1394.

    Google Scholar 

  7. X. Shen, L.G. Chen, S.J. Xia, Z.H. Xie, X.Y. Qin, J. Clean. Prod. 172 (2018) 2153–2166.

    Article  Google Scholar 

  8. Q.H. Gu, H.L. Liu, C.W. Lu, X.X. Li, Y.P. Yang, Metal Mine (2020) No. 3, 56–63.

    Google Scholar 

  9. Q. Feng, Q. Li, Y.Z. Wang, W. Quan, Control Theory Appl. 39 (2021) 1–9.

    Google Scholar 

  10. T.B. Wu, H.Q. Zhu, W. Long, Y.G. Li, Y.L. Liu, J. Cent. South Univ. (Sci. Technol.) 51 (2020) 103–111.

    Google Scholar 

  11. T. Yang, X.Y. Yi, S.W. Lu, K.H. Johansson, T.Y. Chai, Engineering 7 (2021) 1224–1230.

    Article  Google Scholar 

  12. S. Du, M. Wu, X. Chen, W. Cao, IEEE Trans. Ind. Electron 67 (2020) 1233–1241.

    Article  Google Scholar 

  13. S. Liu, Y. Zhao, X. Li, X. Liu, Q. Lyu, L. Hao, ISIJ Int. 61 (2021) 2237–2248.

    Article  CAS  Google Scholar 

  14. C. Zhong, G. Li, Z. Meng, Knowl. Based Syst. 251 (2022) 109215.

    Article  Google Scholar 

  15. T. Liu, G. Xiong, A.W. Mohamed, P.N. Suganthan, Inf. Sci. 609 (2022) 1721–1745.

    Article  Google Scholar 

  16. X. Mi, Energy Rep. 8 (2022) 1020–1028.

    Article  Google Scholar 

  17. Z.Z. Liu, Y. Wang, IEEE Trans. Evol. Comput. 23 (2019) 870–884.

    Article  Google Scholar 

  18. Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective optimization test instances for the CEC 2009 special session and competition, University of Essex, Colchester, UK, 2008.

    Google Scholar 

  19. E. Zitzler, L. Thiele, IEEE Trans. Evol. Comput. 3 (1999) 257–271.

    Article  Google Scholar 

  20. C.A.C. Coello, N.C. Cortés, Genet. Program. Evolvable Mach. 6 (2005) 163–190.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFB3304700) and Hunan Province Natural Science Foundation (2022JJ50132, 2022JCYJ05 and 2022JCYJ09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-hui Wang.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Zp., Li, Xd., Yan, Xt. et al. Optimal proportioning of iron ore in sintering process based on improved multi-objective beluga whale optimisation algorithm. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01173-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01173-3

Keywords

Navigation