Skip to main content
Log in

Prediction of liquid circulation flow rate in RH degasser: improvement of decarburization at low atmospheric pressure

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The two-fluid model coupled with population balance model was used for simulating the gas–liquid flow in the Ruhrstahl–Heraeus (RH) degasser. The predicted circulation flow rate was compared with that measured from a water model experiment to validate the mathematical model. Then, influence of snorkel immersion depth on liquid circulation flow rate was numerically investigated under an atmospheric pressure of 101 and 84 kPa, respectively. Predicted result indicates that the circulation flow rate of the RH degasser in the high-altitude area was severely reduced because of the decrease in atmospheric pressure. However, increasing the snorkel immersion depth from 0.5 to 0.7 m can compensate for the decrease in atmospheric pressure. Industrial test result indicates that decarburization rate is significantly enhanced by increasing the snorkel immersion depth. Through optimization, the percentage of heats with a final carbon content less than 0.002 wt.% is significantly increased from 22.0% to 96.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Chen, J. Yang, L. Li, M. Zhang, S. He, J. CO2 Util. 50 (2021) 101586.

  2. Y. Huang, G.G. Cheng, Q. Wang, S.J. Li, W.X. Dai, Ironmak. Steelmak. 47 (2020) 655–664.

    Article  Google Scholar 

  3. M.A. van Ende, Y.M. Kim, M.K. Cho, J. Choi, I.H. Jung, Metall. Mater. Trans. B 42 (2011) 477–489.

    Article  Google Scholar 

  4. D.Q. Geng, H. Lei, J.C. He, Metall. Mater. Trans. B 41 (2010) 234–247.

    Article  Google Scholar 

  5. S. Chen, H. Lei, M. Wang, Steel Res. Int. 92 (2021) 2100032.

    Article  Google Scholar 

  6. S. Chen, H. Lei, H. Hou, C. Ding, H. Zhang, Y. Zhao, J. Mater. Res. Technol. 15 (2021) 5141–5150.

    Article  Google Scholar 

  7. H. Ling, F. Li, L. Zhang, A.N. Conejo, Metall. Mater. Trans. B 47 (2016) 1950–1961.

    Article  Google Scholar 

  8. G. Chen, S. He, Y. Li, Metall. Mater. Trans. B 48 (2017) 2176–2186.

    Article  Google Scholar 

  9. Y. Luo, C. Liu, Y. Ren, L. Zhang, Steel Res. Int. 89 (2018) 1800048.

    Article  Google Scholar 

  10. Q. Cao, D. Chu, J. Zhang, H. Bi, Y. Xuan, P. Li, JOM 73 (2021) 2660–2671.

    Article  Google Scholar 

  11. J. Dong, C. Feng, R. Zhu, G. Wei, J. Jiang, S. Chen, Metall. Mater. Trans. B 52 (2021) 2127–2138.

    Article  Google Scholar 

  12. C. Liu, L. Zhang, Y. Sun, W. Yang, Metall. Mater. Trans. B 53 (2022) 670–681.

    Article  Google Scholar 

  13. K. Peng, C. Liu, L. Zhang, Y. Sun, Metall. Mater. Trans. B 53 (2022) 2004–2017.

    Article  Google Scholar 

  14. K. Peng, J. Wang, Q. Li, C. Liu, L. Zhang, Metall. Mater. Trans. B 54 (2023) 928–943.

    Article  Google Scholar 

  15. G. Chen, S. He, Y. Li, Y. Guo, Q. Wang, JOM 68 (2016) 2138–2148.

    Article  Google Scholar 

  16. B. Zhu, Q. Liu, M. Kong, J. Yang, D. Li, K. Chattopadhyay, Metall. Mater. Trans. B 48 (2017) 2620–2630.

    Article  Google Scholar 

  17. J.J.M. Peixoto, W.V. Gabriel, T.A. Santos Oliveira, C.A. Silva, I.A. Silva, V. Seshadri, Metall. Mater. Trans. B 49 (2018) 2421–2434.

    Article  Google Scholar 

  18. S.F. Chen, H. Lei, M. Wang, B. Yang, L.J. Dai, Y. Zhao, Vacuum 167 (2019) 255–262.

    Article  Google Scholar 

  19. G. Chen, S. He, Metall. Mater. Trans. B 53 (2022) 208–219.

    Article  Google Scholar 

  20. B. Wang, B. Zhu, B. Zhang, JOM 73 (2021) 2920–2928.

    Article  Google Scholar 

  21. G. Chen, Q. Wang, S. He, Metall. Res. Technol. 116 (2019) 617.

    Article  Google Scholar 

  22. G. Chen, Q. Wang, S. He, Steel Res. Int. 94 (2023) 2200298.

    Article  Google Scholar 

  23. T. Kuwabara, K. Umezawa, K. Mori, H. Watanabe, ISIJ Int. 28 (1988) 305–314.

    Article  Google Scholar 

  24. M. Zhu, Y. Wu, C. Du, Z. Huang, J. Iron Steel Res. Int. 12 (2005) No. 2, 20–24.

    Google Scholar 

  25. J. Zhang, L. Liu, X. Zhao, S. Lei, Q. Dong, ISIJ Int. 54 (2014) 1560–1569.

    Article  Google Scholar 

  26. H. Ling, L. Zhang, Metall. Mater. Trans. B 49 (2018) 2709–2721.

    Article  Google Scholar 

  27. G. Chen, S. He, Ind. Eng. Chem. Res. 58 (2019) 18855–18865.

    Article  Google Scholar 

  28. C.W. Li, G.G. Cheng, X.H. Wang, G.S. Zhu, A.M. Cui, J. Iron Steel Res. Int. 19 (2012) No. 5, 23–28.

    Article  Google Scholar 

  29. Y.H. Li, Y.P. Bao, M. Wang, R. Wang, D.C. Tang, Ironmak. Steelmak. 42 (2015) 366–372.

    Article  Google Scholar 

  30. V. Seshadri, C.A. da Silva, I.A. da Silva, G.A. Vargas, P.S.B. Lascosqui, Ironmak. Steelmak. 33 (2006) 34–38.

    Article  Google Scholar 

  31. D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, J.C. He, Metall. Mater. Trans. B 46 (2015) 1484–1493.

    Article  Google Scholar 

  32. G. Chen, S. He, Vacuum 130 (2016) 48–55.

    Article  Google Scholar 

  33. S. He, G. Chen, C. Guo, Ironmak. Steelmak. 46 (2019) 771–776.

    Article  Google Scholar 

  34. Y.G. Park, W.C. Doo, K.W. Yi, S.B. An, ISIJ Int. 40 (2000) 749–755.

    Article  Google Scholar 

  35. Y.G. Park, K.W. Yi, S.B. Ahn, ISIJ Int. 41 (2001) 403–409.

    Article  Google Scholar 

  36. L. Zhang, F. Li, JOM 66 (2014) 1227–1240.

    Article  Google Scholar 

  37. G. Chen, S. He, Vacuum 153 (2018) 132–138.

    Article  Google Scholar 

  38. L. Schiller, Z. Naumann, Zeitschrift des Vereins Deutscher Ingenieure 77 (1935) 318–320.

    Google Scholar 

  39. O. Simonin, P. Viollet, Modeling of turbulent two-phase jets loaded with discrete particles. Phenomena in multiphase flows, Hemisphere Publ. Corporation, London, UK, 1990.

    Google Scholar 

  40. M. Hounslow, R. Ryall, V. Marshall, AIChE. J. 34 (1988) 1821–1832.

    Article  Google Scholar 

  41. H. Luo, Coalescence, breakup and liquid circulation in bubble column reactors, The Norwegian Institute of Technology, Trondheim, Norway, 1993.

  42. H. Luo, H.F. Svendsen, AlChE. J. 42 (1996) 1225–1233.

    Article  Google Scholar 

  43. M. Sano, K. Mori, Y. Fujita, Tetsu-to-Hagane 65 (1979) 1140–1148.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52104321), the Natural Science Foundation of Chongqing, China (Grant No. CSTB2023NSCQ-MSX0871), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202101404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-ping He.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Gj., He, Sp. Prediction of liquid circulation flow rate in RH degasser: improvement of decarburization at low atmospheric pressure. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01166-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01166-2

Keywords

Navigation