Skip to main content
Log in

Role of retained austenite in advanced high-strength steel: ductility and toughness

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Enhancing the ductility and toughness of advanced high-strength steels is essential for the wide range of promising applications. The retained austenite (RA) is a key phase due to the austenite-to-martensite transformation and its transformation-induced plasticity effect. It is commonly accepted that slow RA-to-martensite transformation is beneficial to ductility; therefore, the RA fraction and stability should be carefully controlled. The RA stability is related to its morphology, size, carbon content, neighboring phase and orientation. Importantly, these factors are cross-influenced. It is noteworthy that the influence of RA on ductility and fracture toughness is not consistent because of their difference in stress state. There is no clear relationship between fracture toughness and tensile properties. Thus, it is important to understand the role of RA in toughness. The toughness is enhanced during the RA-to-martensite transformation, while the fracture toughness is decreased due to the formation of fresh and brittle martensite. As a result, the findings regarding to the effect of RA on fracture toughness are conflicting. Further investigations should be conducted in order to fully understand the effects of RA on ductility and fracture toughness, which can optimize the combination of ductility and toughness in AHSSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, E.V. Pereloma, Mater. Des. 88 (2015) 537–549.

    Article  Google Scholar 

  2. S.M. Song, K.I. Sugimoto, M. Kobayashi, H. Matsubara, T. Kashima, Tetsu-to-Hagane 86 (2000) 563–569.

    Article  Google Scholar 

  3. Z.P. Xiong, A.G. Kostryzhev, A.A. Saleh, L. Chen, E.V. Pereloma, Mater. Sci. Eng. A 664 (2016) 26–42.

    Article  Google Scholar 

  4. O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391–1409.

    Article  Google Scholar 

  5. F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8 (2004) 251–257.

    Article  Google Scholar 

  6. J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.

    Article  Google Scholar 

  7. J.G. Speer, A.M. Streicher, D. Matlock, F. Rizzo, G. Krauss, in: E. Buddy Damm, Matthew J. Merwin (Eds.), Austenite Formation and Decomposition, The Iron & Steel Society (ISS) and TMS (The Minerals, Metals & Materials Society), 2003, pp. 505–522.

    Google Scholar 

  8. B.C. De Cooman, J.G. Speer, Steel Res. Int. 77 (2006) 634–640.

    Article  Google Scholar 

  9. Y. Sakuma, O. Matsumura, O. Akisue, ISIJ Int. 31 (1991) 1348–1353.

    Article  Google Scholar 

  10. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai, Acta Mater. 76 (2014) 425–433.

    Article  Google Scholar 

  11. Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, D. Raabe, Acta Mater. 65 (2014) 215–228.

    Article  Google Scholar 

  12. D. Raabe, D. Ponge, O. Dmitrieva, B. Sander, Adv. Eng. Mater. 11 (2009) 547–555.

    Article  Google Scholar 

  13. D. Matlock, J.G. Speer, in: Proceedings of the Third International Conference on Advanced Structural Steels, Korean Institute of Metals and Materials, Seoul, South Korea, 2006, pp. 774–781.

  14. D. Raabe, D. Ponge, O. Dmitrieva, B. Sander, Scripta Mater. 60 (2009) 1141–1144.

    Article  Google Scholar 

  15. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 17 (2001) 512–516.

    Article  Google Scholar 

  16. F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, Int. J. Plast. 16 (2000) 723–748.

    Article  Google Scholar 

  17. M. Soleimani, A. Kalhor, H. Mirzadeh, Mater. Sci. Eng. A 795 (2020) 140023.

    Article  Google Scholar 

  18. W. Bleck, X. Guo, Y. Ma, Steel Res. Int. 88 (2017) 1700218.

    Article  Google Scholar 

  19. B.L. Ennis, E. Jimenez-Melero, E.H. Atzema, M. Krugla, M.A. Azeem, D. Rowley, D. Daisenberger, D.N. Hanlon, P.D. Lee, Int. J. Plast. 88 (2017) 126–139.

    Article  Google Scholar 

  20. E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, J.G. Speer, Metall. Mater. Trans. A 39 (2008) 2586–2595.

    Article  Google Scholar 

  21. S. Ghosh, P. Kaikkonen, V. Javaheri, A. Kaijalainen, I. Miettunen, M. Somani, J. Kömi, S. Pallaspuro, J. Mater. Res. Technol. 17 (2022) 1390–1407.

    Article  Google Scholar 

  22. X.Y. Long, D.Y. Sun, K. Wang, F.C. Zhang, Z.N. Yang, Y.G. Li, C.L. Zheng, J. Mater. Res. Technol. 17 (2022) 898–912.

    Article  Google Scholar 

  23. X. Long, G. Zhao, F. Zhang, S. Xu, Z. Yang, G. Du, R. Branco, Mater. Sci. Eng. A 775 (2020) 138964.

    Article  Google Scholar 

  24. Z. Wang, M.X. Huang, Int. J. Plast. 134 (2020) 102851.

    Article  Google Scholar 

  25. S. Zhang, W. Zhou, S. Zhou, F. Hu, S. Yershov, K. Wu, J. Mater. Res. Technol. 24 (2023) 2385–2402.

    Article  Google Scholar 

  26. F. Al-Harbi, A.A. Gazder, E. Pereloma, JOM 73 (2021) 3169–3180.

    Article  Google Scholar 

  27. J. Zhao, F. Zhang, Mater. Sci. Eng. A 771 (2020) 138637.

    Article  Google Scholar 

  28. G. Liu, T. Li, Z. Yang, C. Zhang, J. Li, H. Chen, Acta Mater. 201 (2020) 266–277.

    Article  Google Scholar 

  29. W.S. Li, H.Y. Gao, H. Nakashima, S. Hata, W.H. Tian, Mater. Charact. 118 (2016) 431–437.

    Article  Google Scholar 

  30. E. Pereloma, A. Gazder, I. Timokhina, Encyclopedia of iron, steel, and their alloys, CRC Press, New York, USA, 2016.

    Google Scholar 

  31. C. Hu, C.P. Huang, Y.X. Liu, A. Perlade, K.Y. Zhu, M.X. Huang, Acta Mater. 245 (2023) 118629.

    Article  Google Scholar 

  32. P. Jacques, Q. Furnémont, T. Pardoen, F. Delannay, Acta Mater. 49 (2001) 139–152.

    Article  Google Scholar 

  33. I. de Diego-Calderón, I. Sabirov, J.M. Molina-Aldareguia, C. Föjer, R. Thiessen, R.H. Petrov, Mater. Sci. Eng. A 657 (2016) 136–146.

    Article  Google Scholar 

  34. R. Wu, W. Li, S. Zhou, Y. Zhong, L. Wang, X. Jin, Metall. Mater. Trans. A 45 (2014) 1892–1902.

    Article  Google Scholar 

  35. R. Wu, J. Li, W. Li, X. Wu, X. Jin, S. Zhou, L. Wang, Mater. Sci. Eng. A 657 (2016) 57–63.

    Article  Google Scholar 

  36. G. Lacroix, T. Pardoen, P.J. Jacques, Acta Mater. 56 (2008) 3900–3913.

    Article  Google Scholar 

  37. Z. Xiong, P.J. Jacques, A. Perlade, T. Pardoen, Scripta Mater. 157 (2018) 6–9.

    Article  Google Scholar 

  38. J. Hidalgo, C. Celada-Casero, M.J. Santofimia, Mater. Sci. Eng. A 754 (2019) 766–777.

    Article  Google Scholar 

  39. Z. Xiong, P.J. Jacques, A. Perlade, T. Pardoen, Metall. Mater. Trans. A 50 (2019) 3502–3513.

    Article  Google Scholar 

  40. T. Wingens, in: Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, ASM, St. Louis, Missouri, USA, 2021, pp. 212–219.

  41. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68 (2013) 321–324.

    Article  Google Scholar 

  42. D. De Knijf, C. Föjer, L.A.I. Kestens, R. Petrov, Mater. Sci. Eng. A 638 (2015) 219–227.

    Article  Google Scholar 

  43. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 55 (2007) 6713–6723.

    Article  Google Scholar 

  44. P.J. Jacques, F. Delannay, J. Ladrière, Metall. Mater. Trans. A 32 (2001) 2759–2768.

    Article  Google Scholar 

  45. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35 (2004) 2331–2341.

    Article  Google Scholar 

  46. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 53 (2005) 5439–5447.

    Article  Google Scholar 

  47. R. Blondé, E. Jimenez–Melero, L. Zhao, J.P. Wright, E. Brück, S. van der Zwaag, N.H. van Dijk, Acta Mater. 60 (2012) 565–577.

    Article  Google Scholar 

  48. C. Zhang, Z.P. Xiong, D.Z. Yang, V. Dudko, X.W. Cheng, J. Iron Steel Res. Int. 30 (2023) 1916–1920.

    Article  Google Scholar 

  49. S.O. Kruijver, L. Zhao, J. Sietsma, S.E. Offerman, N.H. van Dijk, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, S. van der Zwaag, J. Phys. IV France 104 (2003) 499–502.

    Article  Google Scholar 

  50. O. Muránsky, P. Šittner, J. Zrník, E.C. Oliver, Acta Mater. 56 (2008) 3367–3379.

    Article  Google Scholar 

  51. D. De Knijf, R. Petrov, C. Föjer, L.A.I. Kestens, Mater. Sci. Eng. A 615 (2014) 107–115.

    Article  Google Scholar 

  52. Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, D. Raabe, Mater. Sci. Eng. A 636 (2015) 551–564.

    Article  Google Scholar 

  53. Y.F. Shen, Y.D. Liu, X. Sun, Y.D. Wang, L. Zuo, R.D.K. Misra, Mater. Sci. Eng. A 583 (2013) 1–10.

    Article  Google Scholar 

  54. E.J. Seo, L. Cho, Y. Estrin, B.C. De Cooman, Acta Mater. 113 (2016) 124–139.

    Article  Google Scholar 

  55. P. Gao, W. Chen, F. Li, B. Ning, Z. Zhao, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 1657–1665.

    Article  Google Scholar 

  56. J. Hu, X. Li, Q. Meng, L. Wang, Y. Li, W. Xu, Mater. Sci. Eng. A 855 (2022) 143904.

    Article  Google Scholar 

  57. S. Zhang, K.O. Findley, Acta Mater. 61 (2013) 1895–1903.

    Article  Google Scholar 

  58. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59 (2011) 6059–6068.

    Article  Google Scholar 

  59. H.S. Park, J.C. Han, N.S. Lim, J.B. Seol, C.G. Park, Mater. Sci. Eng. A 627 (2015) 262–269.

    Article  Google Scholar 

  60. T. He, L. Wang, F. Hu, W. Zhou, Z. Zhang, K. Wu, J. Mater. Res. Technol. 22 (2023) 2690–2703.

    Article  Google Scholar 

  61. C. Zhang, Z. Xiong, D. Yang, X. Cheng, Acta Mater. 235 (2022) 118060.

    Article  Google Scholar 

  62. Z. Xiong, D. Yang, H. Zhang, X. Cheng, J. Mater. Sci. Technol. 179 (2024) 22–25.

    Article  Google Scholar 

  63. G.K. Tirumalasetty, M.A. van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, H.W. Zandbergen, Acta Mater. 60 (2012) 1311–1321.

    Article  Google Scholar 

  64. F. Gao, Z. Gao, Q. Zhu, F. Yu, Z. Liu, J. Mater. Res. Technol. 20 (2022) 1976–1992.

    Article  Google Scholar 

  65. T. Masumura, N. Nakada, T. Tsuchiyama, S. Takaki, T. Koyano, K. Adachi, Acta Mater. 84 (2015) 330–338.

    Article  Google Scholar 

  66. Z.P. Xiong, A.A. Saleh, R.K.W. Marceau, A.S. Taylor, N.E. Stanford, A.G. Kostryzhev, E.V. Pereloma, Acta Mater. 134 (2017) 1–15.

    Article  Google Scholar 

  67. C. Garcia–Mateo, F.G. Caballero, M.K. Miller, J.A. Jimenez, J. Mater. Sci. 47 (2011) 1004–1010.

    Article  Google Scholar 

  68. K.S. Choi, Z. Zhu, X. Sun, E. De Moor, M.D. Taylor, J.G. Speer, D.K. Matlock, Scripta Mater. 104 (2015) 79–82.

    Article  Google Scholar 

  69. A. Lavakumar, M.H. Park, S. Hwang, H. Adachi, M. Sato, R.K. Ray, M. Murayama, N. Tsuji, Mater. Sci. Eng. A 874 (2023) 145089.

    Article  Google Scholar 

  70. C. Cabus, H. Réglé, B. Bacroix, Mater. Charact. 58 (2007) 332–338.

    Article  Google Scholar 

  71. M. Liu, C. Song, Z. Cui, J. Mater. Sci. Technol. 78 (2021) 247–259.

    Article  Google Scholar 

  72. R. Ueji, A. Shibata, K. Ushioda, Y. Kimura, T. Ohmura, T. Inoue, Scripta Mater. 194 (2021) 113666.

    Article  Google Scholar 

  73. D. De Knijf, T. Nguyen–Minh, R.H. Petrov, L.A.I. Kestens, J.J. Jonas, J. Appl. Crystallogr. 47 (2014) 1261–1266.

    Article  Google Scholar 

  74. T. Yamashita, N. Koga, O. Umezawa, ISIJ Int. 58 (2018) 1155–1161.

    Article  Google Scholar 

  75. P. Wang, W. Zheng, X. Yu, Y. Wang, Materials 15 (2022) 7679.

    Article  Google Scholar 

  76. P. Gao, W. Chen, F. Li, B. Ning, Z. Zhao, Mater. Lett. 273 (2020) 127955.

    Article  Google Scholar 

  77. A. Grajcar, A. Kilarski, A. Kozłowska, K. Radwański, Materials 12 (2019) 501.

    Article  Google Scholar 

  78. F. Pöhl, Mater. Charact. 167 (2020) 110446.

    Article  Google Scholar 

  79. S. Zhou, F. Hu, K. Wang, C. Hu, H. Dong, X. Wan, S. Cheng, R.D.K. Misra, K. Wu, J. Mater. Res. Technol. 20 (2022) 2221–2234.

    Article  Google Scholar 

  80. D. Han, Y. Xu, J. Zhang, F. Peng, W. Sun, Mater. Sci. Eng. A 821 (2021) 141625.

    Article  Google Scholar 

  81. Y.B. Xu, Y. Zou, Z.P. Hu, D.T. Han, S.Q. Chen, R.D.K. Misra, Mater. Sci. Eng. A 698 (2017) 126–135.

    Article  Google Scholar 

  82. C.H. Seo, K.H. Kwon, K. Choi, K.H. Kim, J.H. Kwak, S. Lee, N.J. Kim, Scripta Mater. 66 (2012) 519–522.

    Article  Google Scholar 

  83. D. Casellas, A. Lara, D. Frómeta, D. Gutiérrez, S. Molas, L. Pérez, J. Rehrl, C. Suppan, Metall. Mater. Trans. A 48 (2017) 86–94.

    Article  Google Scholar 

  84. D. Frómeta, A. Lara, L. Grifé, T. Dieudonné, P. Dietsch, J. Rehrl, C. Suppan, D. Casellas, J. Calvo, Metall. Mater. Trans. A 52 (2021) 840–856.

    Article  Google Scholar 

  85. D. Frómeta, N. Cuadrado, J. Rehrl, C. Suppan, T. Dieudonné, P. Dietsch, J. Calvo, D. Casellas, Mater. Sci. Eng. A 802 (2021) 140631.

    Article  Google Scholar 

  86. D. Yang, Z. Xiong, Metall. Mater. Trans. A 51 (2020) 2072–2083.

    Article  Google Scholar 

  87. Q. Zhou, L. Qian, J. Tan, J. Meng, F. Zhang, Mater. Sci. Eng. A 578 (2013) 370–376.

    Article  Google Scholar 

  88. G. Gao, R. Liu, K. Wang, X. Gui, R.D.K. Misra, B. Bai, Scripta Mater. 184 (2020) 12–18.

    Article  Google Scholar 

  89. H. Du, Y. Gong, T. Liang, Y. Li, Y. Xu, X. Lu, Q. Zeng, X. Jin, Metall. Mater. Trans. A 51 (2020) 2097–2117.

    Article  Google Scholar 

  90. S.D. Antolovich, B. Singh, Metall. Trans. 2 (1971) 2135–2141.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52271004 and 51901021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-ping Xiong.

Ethics declarations

Conflict of interest

Zhi-ping Xiong is a youth editorial board member for Journal of Iron and Steel Research International and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no known competing finical interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuam, V.L., Zhang, H., Wang, Yc. et al. Role of retained austenite in advanced high-strength steel: ductility and toughness. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01165-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01165-3

Keywords

Navigation