Skip to main content
Log in

Effect of alumina occurrence form on metallurgical properties of hematite and magnetite pellets

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of alumina occurrence form on the metallurgical properties of both hematite and magnetite pellets was investigated at the same Al2O3 level of 2 wt.%, including reduction index (RI), low-temperature reduction disintegration index (RDI), reduction swelling index (RSI), and high-temperature softening–dripping performance. The mineralogy of fired pellets was also studied to reveal the influence of alumina occurrence form on the phase composition and microstructure. From the results, the alumina occurrence form presents tremendous impacts on the metallurgical performance of both magnetite and hematite pellets. Addition of all alumina occurrence forms contributes to inferior reducibility of pellets, especially in the case of gibbsite for magnetite pellets with a RI of 58.4% and kaolinite for hematite pellets with a RI of 56.8%. However, addition of all alumina occurrence forms improves the RDI of magnetite pellets, while there is no significant difference among various alumina occurrence forms. In contrast, alumina occurrence forms have little influence on the RDI of hematite pellets. The presence of free alumina, gibbsite, and kaolinite tends to improve the RSI of hematite and magnetite pellets, whereas hercynite gives the opposite trend with a RSI of 25.6%. For softening–dripping performance of magnetite pellets, all alumina occurrence forms contribute to narrower softening–melting interval. Meanwhile, alumina, gibbsite, and kaolinite give narrower softening–dripping interval, at 229, 217, and 88 °C, respectively, whereas addition of hercynite results in the largest melting range at 276 °C due to its high melting point. Regarding hematite pellets, free alumina, gibbsite, and hercynite tend to enlarge melting range, whereas kaolinite contributes to lower dripping temperature of 1148 °C and narrow softening–dripping interval of 88 °C due to the formation of a greater amount of slag phase at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Zhang, D.Q. Zhu, J. Pan, Z.Q. Guo, M.J. Xu, J. Iron Steel Res. Int. 27 (2020) 770–781.

    Article  Google Scholar 

  2. A.B. Kotta, D. Narsimhachary, S.K. Karak, M. Kumar, Trans. Indian Inst. Met. 73 (2020) 2561–2575.

    Article  Google Scholar 

  3. K. Sunahara, K. Nakano, M. Hoshi, T. Inada, S. Komatsu, T. Yamamoto, ISIJ Int. 48 (2008) 420–429.

    Article  Google Scholar 

  4. S. Wu, Y. Lu, Z. Hong, H. Zhou, ISIJ Int. 60 (2020) 1504–1511.

    Article  Google Scholar 

  5. J.L. Zhang, Z.Y. Wang, X.D. Xing, Z.J. Liu, Int. J. Miner. Metall. Mater. 21 (2014) 339–344.

    Article  Google Scholar 

  6. Z.Q. Guo, R.N. Zhan, Y. Shi, D.Q. Zhu, J. Pan, C.C. Yang, Y.G. Wang, J. Wang, Chem. Eng. J. 456 (2023) 141157.

    Article  Google Scholar 

  7. S. Dwarapudi, P.K. Gupta, S.M. Rao, ISIJ Int. 47 (2007) 67–72.

    Article  Google Scholar 

  8. Z.L. Zhang, Y. Sun, R. Chen, L.L. Li, B. Tang, Metall. Res. Technol. 117 (2020) 505.

    Article  Google Scholar 

  9. J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, S.H. Yi, ISIJ Int. 44 (2004) 1291–1297.

    Article  Google Scholar 

  10. Z.M. Yan, X.W. Lv, D. Liang, J. Zhang, C.G. Bai, Metall. Mater. Trans. B 48 (2017) 1092–1099.

    Article  Google Scholar 

  11. Y.Z. Pan, H.B. Zuo, J.S. Wang, Q.G. Xue, G. Wang, X.F. She, J. Iron Steel Res. Int. 27 (2020) 121–131.

    Article  Google Scholar 

  12. S.K. Das, B. Das, R. Sakthivel, B.K. Mishra, Miner. Process. Extr. Metall. Rev. 31 (2010) 97–110.

    Article  Google Scholar 

  13. D. Oliveira, S.L. Wu, Y.M. Dai, J. Xu, H. Chen, J. Iron Steel Res. Int. 19 (2012) No. 6, 1–5.

    Article  Google Scholar 

  14. L.M. Lu, Iron ore: mineralogy, processing and environmental sustainability, Woodhead Publishing, Cambridge, UK, 2015.

    Google Scholar 

  15. Y.X. Xue, J. Pan, D.Q. Zhu, Z.Q. Guo, H.Y. Tian, Y. Shi, S.H. Lu, J. Mater. Res. Technol. 12 (2021) 1157–1170.

    Article  Google Scholar 

  16. N.A.S. Webster, D.P. O'dea, B.G. Ellis, M.I. Pownceby, ISIJ Int. 57 (2017) 41–47.

    Article  Google Scholar 

  17. J.J. Dong, G. Wang, Y.G. Gong, Q.G. Xue, J.S. Wang, Ironmak. Steelmak. 42 (2015) 34–40.

    Article  Google Scholar 

  18. J.G. Lu, C.C. Lan, Q. Lyu, S.H. Zhang, J.N. Sun, Int. J. Miner. Metall. Mater. 28 (2021) 629–636.

    Article  Google Scholar 

  19. Z.Y. Wang, X.D. Xing, J.L. Zhang, in: Proceedings of the Ninth China Iron and Steel Annual Conference, The Chinese Society for Metals, Beijing, China, 2013, pp. 382–387.

  20. Z. Wei, J. Zhang, B.P. Qin, Y. Dong, Y. Lu, Y. Li, W.X. Hao, Y.F. Zhang, Powder Technol. 332 (2018) 18–26.

    Article  Google Scholar 

  21. Z.P. Zhu, T. Jiang, G.H. Li, Y.F. Guo, Y.B. Yang, Thermodynamics of reactions among Al2O3, CaO, SiO2 and Fe2O3 during roasting processes, in: J.C. Moreno Piraján (Eds.), Thermodynamics-Interaction Studies-Solids, Liquids and Gases. IntechOpen, 2011. https://doi.org/10.5772/21545.

    Google Scholar 

  22. Y.F. Guo, K. Liu, F. Chen, S.H. Wang, F.Q. Zheng, L.Z. Yang, Y.J. Liu, Powder Technol. 393 (2021) 291–300.

    Article  Google Scholar 

  23. W. Zhao, M.S. Chu, C. Feng, H.T. Wang, Z.G. Liu, J. Tang, W.P. Wang, Ironmak. Steelmak. 47 (2020) 388–397.

    Article  Google Scholar 

  24. H.T. Wang, H.Y. Sohn, ISIJ Int. 51 (2011) 906–912.

    Article  Google Scholar 

  25. T. Jiang, G.Q. He, G.H. Li, X.H. Fan, Z.X. Cui, Iron and Steel 42 (2007) No. 5, 7–11.

    Google Scholar 

  26. T. Simmonds, The high temperature decomposition of hematite under reactive gas atmospheres: for use in chemical looping combustion, The University of Queensland, Australia, 2017.

    Google Scholar 

  27. L. Lu, R.J. Holmes, J.R. Manuel, ISIJ Int. 47 (2007) 349–358.

    Article  Google Scholar 

  28. Z.C. Yang, Z.G. Liu, M.S. Chu, L.H. Gao, C. Feng, J. Tang, ISIJ Int. 61 (2021) 1431–1438.

    Article  Google Scholar 

  29. K. Kanbara, T. Hagiwara, A. Shigemi, S.I. Kondo, Y. Kanayama, K.I. Wakabayashi, N. Hiramoto, Tetsu-to-Hagane 62 (1976) 535–546.

    Article  Google Scholar 

  30. Y. Shimomura, K. Nishikawa, S. Arino, T. Katayama, Y. Hida, T. Isoyama, Tetsu-to-Hagane 62 (1976) 547–558.

    Article  Google Scholar 

  31. M. Hino, T. Nagasaka, A. Katsumata, K.I. Higuchi, K. Yamaguchi, N. Kon-No, Metall. Mater. Trans. B 30 (1999) 671–683.

    Article  Google Scholar 

  32. J.B. Kim, I. Sohn, ISIJ Int. 54 (2014) 2050–2058.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52004339), the Key Research and Development Project of Hunan Province, China (No. 2022SK2075), China Baowu Low Carbon Metallurgy Innovation Foudation (BWLCF202216) and the Open Sharing Fund for the Large-Scale Instruments and Equipment of Central South University (CSUZC202207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-cong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Cong-cong Yang is an editorial board member for Journal of Iron and Steel Research International and was not involved in the editorial review or the decision to publish this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Tang, Cm., Yang, Cc. et al. Effect of alumina occurrence form on metallurgical properties of hematite and magnetite pellets. J. Iron Steel Res. Int. 31, 797–809 (2024). https://doi.org/10.1007/s42243-023-01066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01066-5

Keywords

Navigation