Skip to main content
Log in

Review on improving gas permeability of blast furnace

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

A Correction to this article was published on 02 April 2020

This article has been updated

Abstract

Blast furnace ironmaking process is the most mature and highly effective process for producing liquid iron. Blast furnace is a gas–solid and gas–solid–liquid countercurrent reactor, and maintaining gas permeability is the precondition of smooth production. Therefore, improving the gas permeability throughout the blast furnace remains a hot issue which is concerned by many metallurgical scholars. According to the research results of many scholars, the dominant factors influencing the gas permeability of different locations in the blast furnace (locations are distinguished according to the morphology change of the burdens) were reviewed. And the strategies for improving the gas permeability of different locations in the blast furnace were summarized based on these dominant influencing factors, such as suppressing the low-temperature reduction degradation of sinter in the lump zone, improving the indirect reduction degree and suppressing the interaction between different burdens. It is hoped to provide both theoretical and practical values for guiding the blast furnace so as to improve smooth operation and smelting efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 02 April 2020

    The original version of this article unfortunately contained mistakes. Equation 1 and Tables 1 and 2 were incorrect. The corrected equation and tables are given below.

  • 02 April 2020

    The original version of this article unfortunately contained mistakes. Equation��1 and Tables��1 and 2 were incorrect. The corrected equation and tables are given below.

References

  1. Y. Kashiwaya, ISIJ Int. 52 (2012) 1383.

    Article  Google Scholar 

  2. L.L. Cao, Y.N. Wang, Q. Liu, X.M. Feng, ISIJ Int. 58 (2018) 573–584.

    Article  Google Scholar 

  3. W.Q. Chen, X.G. Zhu, H.G. Zheng, J.L. Sun, P. Yu, Iron and Steel 36 (2001) No. 7, 17–19.

    Google Scholar 

  4. S.X. Zhu, Steelmaking 32 (2016) No. 6, 27–33.

    Google Scholar 

  5. R. Zhu, X.J. Wang, C.J. Niu, F. Gao, Z.B. Hu, Special Steel 29 (2008) No. 1, 40–42.

    Google Scholar 

  6. D.M. Zhao, Ferro-Alloys 201 (2008) 11–13.

    Google Scholar 

  7. S. Ergun, Chem. Eng. Prog. 48 (1952) 89–94.

    Google Scholar 

  8. J.S. Wu, B.M. Yu, Int. J. Heat Mass Transfer 50 (2007) 3925–3932.

    Article  Google Scholar 

  9. G. Wang, J.S. Wang, Q.G. Xue, ISIJ Int. 57 (2017) 590–592.

    Article  Google Scholar 

  10. S.L. Wu, X.Q. Liu, Q. Zhou, J. Xu, C.S. Liu, J. Iron Steel Res. Int. 18 (2011) No. 8, 20–24.

    Article  Google Scholar 

  11. R. Jaffarullah, A. Arumugam, V.K. Jha, V. Narayanan, ISIJ Int. 48 (2008) 918–924.

    Article  Google Scholar 

  12. I. Shigaki, M. Sawada, N. Gennai, Trans. ISIJ 26 (1986) 503–511.

    Article  Google Scholar 

  13. R. Liu, L.H. Wang, Z.Z. Yan, X.J. Wang, Y.C. Zhao, Q. Lv, Sintering and Pelletizing 43 (2018) No. 1, 1–5.

    Google Scholar 

  14. X. Zhang, J.L. Zhang, Z.W. Hu, H.B. Zuo, H.W. Guo, J. Iron Steel Res. Int. 17 (2010) No. 11, 7–12.

    Article  Google Scholar 

  15. Y.F. Guo, X.M. Guo, ISIJ Int. 57 (2017) 228–235.

    Article  Google Scholar 

  16. Y.F. Guo, X.M. Guo, J Iron Steel Res. 29 (2017) 697–703.

    Google Scholar 

  17. S.C. Panigrahy, P. Verstraeten, J. Dilewijns, Metall. Trans. B 15 (1984) 23–32.

    Article  Google Scholar 

  18. U.S. Yadav, B.D. Pandey, B.K. Das, D.N. Jena, Ironmak. Steelmak. 29 (2002) 91–95.

    Article  Google Scholar 

  19. P. Pourghahramani, E. Forssberg, Int. J. Miner. Process. 82 (2007) 96–105.

    Article  Google Scholar 

  20. M. Matsumura, M. Hoshi, T. Kawaguchi, ISIJ Int. 45 (2005) 594–602.

    Article  Google Scholar 

  21. H. Kimura, T. Ogawa, M. Kakiki, A. Matsumoto, F. Tsukihashi, ISIJ Int. 45 (2005) 506–512.

    Article  Google Scholar 

  22. F.M. Shen, X. Jiang, G.S. Wu, G. Wei, X.G. Li, Y.S. Shen, ISIJ Int. 46 (2006) 65–69.

    Article  Google Scholar 

  23. D.C. Goldring, T.A.T. Fray, Ironmak. Steelmak. 16 (1989) 83–89.

    Google Scholar 

  24. H.P. Pimenta, V. Seshadri, Ironmak. Steelmak. 29 (2002) 175–179.

    Article  Google Scholar 

  25. J.Z. Liu, Q.G. Xue, X.F. She, J.S. Wang, Powder Technol. 246 (2013) 73–81.

    Article  Google Scholar 

  26. G.J. Ba, Research on Iron and Steel 101 (1998) 3–6.

    Google Scholar 

  27. S.L. Wu, H.L. Han, H.F. Xu, H.W. Wang, X.Q. Liu, ISIJ Int. 50 (2010) 686–694.

    Article  Google Scholar 

  28. S.L. Wu, H.L. Han, X.Q. Liu, ISIJ Int. 50 (2010) 987–993.

    Article  Google Scholar 

  29. S.L. Wu, H.L. Han, H.F. Xu, L.J. Yan, Chin. J. Process Eng. 10 (2010) No. S1, 37–42.

    Google Scholar 

  30. S.L. Wu, G.J. Wang, W.Z. Jiang, J.D. Sun, H.F. Xu, Iron and Steel 42 (2007) No. 3,10–13.

    Google Scholar 

  31. S.L. Wu, L.X. Wang, Y.J. Wang, J.C. Zhang, Chinese Journal of Engineering 38 (2016) 1546–1552.

    Google Scholar 

  32. W.T. Guo, Q.G. Xue, Y.L. Liu, X.F. She, J.S. Wang, Ironmak. Steelmak. 43 (2016) 22–30.

    Article  Google Scholar 

  33. W.T. Guo, Q.G. Xue, Y.L. Liu, X.F. She, J.S. Wang, High Temperature Materials and Processes 35 (2016) 805–812.

    Google Scholar 

  34. Y.L. Liu, J.S. Wang, W.T. Guo, Z.S. Dong, Q.G. Xue, High Temperature Materials and Processes 35 (2016) 507–514.

    Google Scholar 

  35. Y.L. Liu, W.T. Guo, Q.G. Xue, J.S. Wang, Sci. Sin. Tech. 44 (2014) 933–940.

    Google Scholar 

  36. L. Chen, Q.G. Xue, W.T. Guo, X.F. She, J.S. Wang, Ironmak. Steelmak. 43 (2016) 458–464.

    Article  Google Scholar 

  37. L.J. Yan, S.L. Wu, H.L. Han, Chin. J. Process Eng. 10 (2010) No. S1, 93–97.

    Google Scholar 

  38. L. Chen, Q.G. Xue, W.T. Guo, X.F. She, J.S. Wang, Iron and Steel 51 (2016) No. 2, 15–21.

    Google Scholar 

  39. M.S. Zhou, F.P. Tang, D.M. Zhao, X.P. Yang, J.S. Wang, J.J. Li, Iron and Steel 53 (2018) No. 4, 15–19.

    Google Scholar 

  40. M.A. Tseitlin, S.E. Lazutkin, G.M. Styopin, ISIJ Int. 34 (1994) 570–573.

    Article  Google Scholar 

  41. Y.H. Qi, D.L. Yan, J.J. Gao, J.C. Zhang, M.K. Li, Iron and Steel 46 (2011) No. 3, 6–8.

    Google Scholar 

  42. P. Kaushik, R.J. Fruehan, Ironmak. Steelmak. 33 (2006) 507–519.

    Article  Google Scholar 

  43. P. Kaushik, R.J. Fruehan, Ironmak. Steelmak. 33 (2006) 520–528.

    Article  Google Scholar 

  44. S.H. Chung, K.H. Kim, I. Sohn, ISIJ Int. 55 (2015) 1157–1164.

    Article  Google Scholar 

  45. X.F. She, J.S. Wang, J.Z. Liu, X.X. Zhang, Q.G. Xue, ISIJ Int. 54 (2014) 2728–2736.

    Article  Google Scholar 

  46. J. Ishii, R. Murai, I. Sumi, Y. Yongxiang, R. Boom, ISIJ Int. 57 (2017) 1531–1536.

    Article  Google Scholar 

  47. J.Y. Mu, G.F. Zhou, K.T. Liu, W.S. Zheng, S.G. Miao, Journal of Wuhan Iron and Steel University 13 (1990) 117–124.

    Google Scholar 

  48. Z.J. Teng, S.S. Cheng, G.L. Zhao, J. Iron Steel Res. 26 (2014) No. 12, 9–14.

    Google Scholar 

  49. G.L. Zhao, S.S. Cheng, W.X. Xu, C. Li, Iron and Steel 51 (2016) No. 6, 10–18.

    Google Scholar 

  50. P.D. Chen, Q.D. Sun, Y.Q. Xue, J.C. Liu, T. Wang, China Metallurgy 29 (2019) No. 1, 48–51.

    Google Scholar 

  51. Y. Sheng, D.Q. Chen, M.M. Zhang, Research on Iron and Steel 43 (2015) No. 2, 10–13.

    Google Scholar 

  52. X.H. Zhu, L.S. Yang, T. Peng, G.Z. Li, X.G. Yang, Metal Materials and Metallurgy Engineering 42 (2014) No. 4, 36–38.

    Google Scholar 

  53. X.W. An, J.S. Wang, R.Z. Lan, Y.H. Han, Q.G. Xue, J. Iron Steel Res. Int. 20 (2013) No. 5, 11–16.

    Article  Google Scholar 

  54. S. Ueda, T. Kon, T. Miki, S.J. Kim, H. Nogami, ISIJ Int. 55 (2015) 2098–2104.

    Article  Google Scholar 

  55. S.P. Yang, C. Wang, J. Dong, C. Wang, Z.Z. Ji, J.K. Pang, J. Iron Steel Res. 31 (2019) 24–30.

    Google Scholar 

  56. T. Hilding, S. Gupta, V. Sahajwalla, B. Björkman, J.O. Wikström, ISIJ Int. 45 (2005) 1041–1050.

    Article  Google Scholar 

  57. J. Haapakangas, J. Uusitalo, O. Mattila, T. Kokkonen, D. Porter, T. Fabritius, Steel Res. Int. 84 (2013) 65–71.

    Article  Google Scholar 

  58. X. Xing, H. Rogers, G. Zhang, K. Hockings, P. Zulli, O. Ostrovski, ISIJ Int. 56 (2016) 786–793.

    Article  Google Scholar 

  59. P. Wang, Y.Q. Zhang, J.X. Li, H.M. Long, Q.M. Meng, S.C. Yu, Chin. J. Process Eng. 16 (2016) 138–143.

    Google Scholar 

  60. M. Zamalloa, D. Ma, T.A. Utigard, ISIJ Int. 35 (1995) 458–463.

    Article  Google Scholar 

  61. Q.Q. Zhao, Q.G. Xue, X.F. She, H. Wang, J.S. Wang, Chin. J. Process Eng. 12 (2012) 789–795.

    Google Scholar 

  62. R. Guo, Q. Wang, S. Zhang, Coal Conversion 35 (2012) No. 2, 12–16.

    Google Scholar 

  63. Y.L. Liu, Q.G. Xue, G. Wang, J.S. Wang, Ironmak. Steelmak. 45 (2018) 821–827.

    Article  Google Scholar 

  64. N.S. Hur, B.R. Cho, J.S. Choi, K.W. Hanand, K.Y. Seo, Rev. Met. Paris 93 (1996) 367–377.

    Article  Google Scholar 

  65. W. Xiong, X.G. Bi, G.F. Zhou, Chin. J. Process Eng. 6 (2006) 347–351.

    Google Scholar 

  66. S.J. Chew, P. Zulli, A. Yu, ISIJ Int. 41 (2001) 1122–1130.

    Article  Google Scholar 

  67. Y. Ohno, T. Furukawa, M. Matsu-Ura, ISIJ Int. 34 (1994) 641–648.

    Article  Google Scholar 

  68. K. Kimura, S. Kishimoto, A. Sakai, T. Ariyama, M. Sato, Rev. Met. Paris 93 (1996) 575–580.

    Article  Google Scholar 

  69. X. Liu, X.Q. Chen, J. Northeast. Univ. (Nat. Sci.) 21 (2000) 177–180.

Download references

Acknowledgements

This work is sponsored by the National Key Research and Development Program of China (No. 2016YFB0601304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bin Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Yz., Zuo, Hb., Wang, Js. et al. Review on improving gas permeability of blast furnace. J. Iron Steel Res. Int. 27, 121–131 (2020). https://doi.org/10.1007/s42243-019-00321-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00321-y

Keywords

Navigation