Skip to main content
Log in

Mechanism of local solidification time variations with melt rate during vacuum arc remelting process of 8Cr4Mo4V high-strength steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel, and the ingot growth was simulated by dynamic mesh techniques. The results show that as the ingot grows, the molten pool profile changes from shallow and flat to V-shaped, and both the molten pool depth and the mushy width increase. Meanwhile, the variation of both the molten pool shape and the mushy width melt rate is clarified by the thermal equilibrium analysis. As melt rate increases, both the molten pool depth and the mushy width increase. It is caused by the increment in sensible heat stored in the ingot due to the limitation of the cooling capacity of the mold. The nonlinear increment in sensible heat leads to a nonlinear increase in the mushy width. In addition, as melt rate increases, the local solidification time (LST) of ingot decreases obviously at first and then increases. When melt rate is controlled in a suitable range, LST is the lowest and the secondary dendrite arm spacing of the ingot is the smallest, which can effectively improve the compactness degree of 8Cr4Mo4V high-strength steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.J. Noesen, JOM 12 (1960) 842–849.

    Article  ADS  CAS  Google Scholar 

  2. Z. Li, Frontier technology of iron and steel metallurgy, Metallurgical Industry Press, Beijing, China, 1997.

    Google Scholar 

  3. Z. Xue, H. Zhu, L. Chang, Special melting, metallurgical Industry Press, Beijing, China, 2018.

    Google Scholar 

  4. H. Gruber, JOM 10 (1958) 193–198.

    Article  CAS  Google Scholar 

  5. M.F. Soler, K.E. Niemeyer, J. Manuf. Sci. Eng. 140 (2018) 071004.

    Article  Google Scholar 

  6. T. Quatravaux, S. Ryberon, S. Hans, A. Jardy, B. Lusson, P.E. Richy, D. Ablitzer, J. Mater. Sci. 39 (2004) 7183–7191.

    Article  ADS  CAS  Google Scholar 

  7. A. Jardy, D. Ablitzer, Mater. Sci. Technol. 25 (2009) 163–169.

    Article  ADS  CAS  Google Scholar 

  8. D.M. Stefanescu, R. Ruxanda, Metallography and microstructures, ASM Int., USA, 2004.

    Google Scholar 

  9. R. Pierer, C. Bernhard, J. Mater. Sci. 43 (2008) 6938–6943.

    Article  ADS  CAS  Google Scholar 

  10. J. Zhao, H.G. Zhong, K. Han, R.X. Li, Z.S. Xu, Q.J. Zhai, J. Iron Steel Res. Int. 25 (2018) 821–829.

    Article  Google Scholar 

  11. H. Zhu, Z. Jiang, H. Li, H. Feng, W. Jiao, S. Zhang, P. Wang, J. Zhu, ISIJ Int. 58 (2018) 1267–1274.

    Article  CAS  Google Scholar 

  12. G. Du, J. Li, Z.B. Wang, Metall. Mater. Trans. B 48 (2017) 2873–2890.

    Article  CAS  Google Scholar 

  13. Y.B. Zhong, L. Qiang, Y.P. Fang, H. Wang, M.H. Peng, L.C. Dong, T.X. Zheng, Z.S. Lei, W.L. Ren, Z.M. Ren, Mater. Sci. Eng. A 660 (2016) 118–126.

    Article  CAS  Google Scholar 

  14. H. Cao, Z. Jiang, Y. Dong, F. Liu, Y. Cao, Z. Hou, K. Yao, M. Xu, Steel Res. Int. 90 (2019) 1800337.

    Article  Google Scholar 

  15. J. Yu, Numerical simulation of the coupled multiphysics in electroslag remelting process under atmospheric and pressurized conditions, Northeastern University, Shenyang, China, 2019.

    Google Scholar 

  16. B.V.S. Rao, D. Gopikrishna, S.J.S. Emmanual, S.N. Jha, in: International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, USA, 1996, pp. 67–76.

    Google Scholar 

  17. L.G. Hosamani, W.E. Wood, J.H. Devletian, in: Superalloy 718-Metallurgy and Applications, Pittsburgh, USA, 1989, pp. 49–57.

    Book  Google Scholar 

  18. E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, J. Bohacek, Metall. Mater. Trans. B 51 (2020) 222–235.

    Article  CAS  Google Scholar 

  19. A. Kermanpur, D.G. Evans, R.J. Siddall, P.D. Lee, M. McLean, J. Mater. Sci. 39 (2004) 7175–7182.

    Article  ADS  CAS  Google Scholar 

  20. Y. Wang, L. Zhang, J. Zhang, Y. Zhou, T. Liu, Y. Ren, D. Jiang, Steel Res. Int. 93 (2022) 2100408.

    Article  CAS  Google Scholar 

  21. A.D. Patel, R.S. Minisandram, D.G. Evans, in: 10th International Symposium on Superalloys, Champion, PA, USA, 2004, pp. 917–924.

  22. E. Karimi-Sibaki, A. Kharicha, M. Abdi, A. Vakhrushev, M. Wu, A. Ludwig, J. Bohacek, Metall. Mater. Trans. B 52 (2021) 3354–3362.

    Article  CAS  Google Scholar 

  23. E.N. Kondrashov, M.O. Leder, A.Y. Maksimov, Russ. Metall. 2018 (2018) 1114–1120.

    Article  ADS  Google Scholar 

  24. J. Motley, K. Kelkar, P. King, M. Cibula, A. Mitchell, in: Proceedings of the Liquid Metal Processing & Casting Conference 2019, Birmingham, UK, 2019, pp. 17–27.

  25. D.K. Gartling, P.A. Sackinger, Int. J. Numer. Methods Fluids 24 (1997) 1271–1289.

    Article  ADS  CAS  Google Scholar 

  26. H.C. Zhu, H.B. Li, S.C. Zhang, K.B. Li, G.H. Liu, Z.H. Jiang, X. Geng, P.D. Han, Ironmak. Steelmak. 42 (2015) 748–755.

    Article  CAS  Google Scholar 

  27. L. Yuan, G. Djambazov, P.D. Lee, K. Pericleous, Int. J. Mod. Phys. B 23 (2009) 1584–1590.

    Article  ADS  CAS  Google Scholar 

  28. P. Chapelle, A. Jardy, J.P. Bellot, M. Minvielle, J. Mater. Sci. 43 (2008) 5734–5746.

    Article  ADS  CAS  Google Scholar 

  29. S. Spitans, H. Franz, E. Baake, A. Jakovičs, Magnetohydrodynamics 53 (2017) 633–642.

    Article  Google Scholar 

  30. X. Xu, W. Zhang, P.D. Lee, Metall. Mater. Trans. A 33 (2002) 1805–1815.

    Article  Google Scholar 

  31. E.N. Kondrashov, M.I. Musatov, A.Y. Maksimov, A.E. Goncharov, L.V. Konovalov, J. Engin. Thermophys. 16 (2007) 19–25.

    Article  Google Scholar 

  32. Z.J. Yang, X.H. Zhao, H.C. Kou, J.S. Li, R. Hu, L. Zhou, Trans. Nonferrous Met. Soc. China 20 (2010) 1957–1962.

    Article  CAS  Google Scholar 

  33. H. Kou, Y. Zhang, P. Li, H. Zhong, R. Hu, J. Li, L. Zhou, Rare Met. Mater. Eng. 43 (2014) 1537–1542.

    Article  Google Scholar 

  34. R.L. Williamson, G.J. Shelmidine, in: 5th International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, USA, 2001, pp. 91–102.

    Book  Google Scholar 

  35. K. Pericleous, G. Djambazov, M. Ward, L. Yuan, P.D. Lee, Metall. Mater. Trans. A 44 (2013) 5365–5376.

    Article  CAS  Google Scholar 

  36. P. Chapelle, R.M. Ward, A. Jardy, V. Weber, J.P. Bellot, M. Minvielle, Metall. Mater. Trans. B 40 (2009) 254–262.

    Article  Google Scholar 

  37. H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57 (2012) 268–435.

    Article  CAS  Google Scholar 

  38. Z. Li, G. Tang, X. Ma, M. Sun, L. Wang, IEEE Trans. Plasma Sci. 38 (2010) 3079–3082.

    Article  ADS  CAS  Google Scholar 

  39. C.R. Feng, G.M. Chow, S.P. Rangarajan, X. Chen, K.E. Gonsalves, C.C. Law, Nanostructured Mater. 8 (1997) 45–54.

    Article  CAS  Google Scholar 

  40. J. Guan, L. Wang, Z. Zhang, X. Shi, X. Ma, Tribol. Int. 119 (2018) 165–174.

    Article  CAS  Google Scholar 

  41. A. Dodd, J. Kinder, B. Torp, B.R. Nielsen, C.M. Rangel, M.F. da Silva, Surf. Coat. Technol. 74–75 (1995) 754–759.

    Article  Google Scholar 

  42. J. Guan, L. Wang, Y. Mao, X. Shi, X. Ma, B. Hu, Tribol. Int. 126 (2018) 218–228.

    Article  CAS  Google Scholar 

  43. E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, H. Holzgruber, B. Ofner, M. Ramprecht, in: Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting, Hoboken, USA, 2013, pp. 13–19.

  44. E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, J. Bohacek, H. Holzgruber, B. Ofner, A. Scheriau, M. Kubin, Appl. Therm. Eng. 130 (2018) 1062–1069.

    Article  Google Scholar 

  45. X. Wang, R.M. Ward, M.H. Jacobs, M.D. Barratt, Metall. Mater. Trans. A 39 (2008) 2981–2989.

    Article  Google Scholar 

  46. H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, Z.H. Jiang, Metall. Mater. Trans. B 52 (2021) 3235–3245.

    Article  CAS  Google Scholar 

  47. H. Zhu, H. Li, Z. Jiang, Z. He, H. Feng, S. Zhang, ISIJ Int. 60 (2020) 1978–1984.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was financially supported by National Natural Science Foundation of China (Nos. U1908223 and U1960203) and Fundamental Research Funds for the Central Universities (Grant No. N2125017) and Talent Project of Revitalizing Liaoning (Grant No. XLYC1902046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-chun Zhu or Zhou-hua Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, T., Zhu, Hc., Jiang, Zh. et al. Mechanism of local solidification time variations with melt rate during vacuum arc remelting process of 8Cr4Mo4V high-strength steel. J. Iron Steel Res. Int. 31, 377–388 (2024). https://doi.org/10.1007/s42243-023-01061-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01061-w

Keywords

Navigation