Skip to main content
Log in

Effect of Revert Addition on the Nitrogen Removal From Liquid Superalloy During Vacuum Induction Melting Process: Experimental and Simulation Studies

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Impurity and non-metallic inclusions control are imperative for the metallurgical quality of superalloys. In this paper, the effect of revert addition on the nitrogen removal and inclusion characteristics of GH4738 superalloy has been investigated. And a multiscale transient model for describing and predicting nitrogen removal from liquid superalloy during the refining process is developed by coupling macroscopic phenomena (including electromagnetic, fluid flow, heat, and mass transfer). A series of experimental data validate the reliability of the model. Results demonstrated that revert addition significantly suppressed the nitrogen removal efficiency and led to more nitrogen residue in the liquid superalloy, contributing to more nitrides or carbonitrides precipitation. The transient model shows that the residual nitrogen in the molten bath is spatially inhomogeneous distributed, in which the mass transfer of nitrogen between the gas–liquid interface is synergistically controlled by chamber pressure, bath temperature, and melt flow pattern. Increasing the refining power enhances the stirring intensity, which accelerates solute transport and facilitates nitrogen removal, but it also leads to a higher refining temperature that thermodynamically inhibits the denitrification reaction. Simulation results show that vacuum refining of revert superalloys by reducing the chamber pressure and increasing the metal bath stirring intensity is beneficial to obtain alloys with low nitrogen content. Considering the inhibitory effect of high temperature and revert addition, adjusting the refining power is recommended to promote nitrogen removal when the proportion of revert is more than 40 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Choudhury: ISIJ Int., 1992, vol. 32, pp. 563–74.

    Article  CAS  Google Scholar 

  2. A. Mitchell: Key Eng. Mater., 1992, vol. 77, pp. 177–86.

    Article  Google Scholar 

  3. L.R. Curwick, W.A. Petersen, and J.J. deBarbadillo: Superalloy Scrap-Generation and Recycling. Superalloys, ASM, Metals Park, 1980, pp. 21–30.

    Google Scholar 

  4. A. Mitchell: ISIJ Int., 1992, vol. 32, pp. 557–62.

    Article  CAS  Google Scholar 

  5. H.B. Bai, H.R. Zhang, J.F. Weng, B. Kong, and H. Zhang: Mater. Res. Innovat., 2014, vol. 18, pp. S4357-4362.

    Article  Google Scholar 

  6. R.R. Srivastava, M.-S. Kim, J.-C. Lee, M.K. Jha, and B.-S. Kim: J. Mater. Sci., 2014, vol. 49, pp. 4671–86.

    Article  CAS  Google Scholar 

  7. H. Tupac-Yupanqui and A. Armani: J. Mater. Eng. Perform., 2021, vol. 30, pp. 1177–87.

    Article  CAS  Google Scholar 

  8. Y.H. Yang, J.J. Yu, X.F. Sun, T. Jin, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2012, vol. 532, pp. 6–12.

    Article  CAS  Google Scholar 

  9. X.B. Huang, Y. Zhang, and Z.Q. Hu: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1755–61.

    Article  Google Scholar 

  10. X.L. Guo, J.B. Yu, X.F. Li, Y. Hou, and Z.M. Ren: Ironmak. Steelmak., 2016, vol. 45, pp. 215–23.

    Article  Google Scholar 

  11. X. Lu, K. Matsubae, K. Nakajima, S. Nakamura, and T. Nagasaka: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1785–95.

    Article  Google Scholar 

  12. F.B. Khiavi, M. Soltanieh, and S.M. Abbasi: Vacuum, 2022, vol. 197, p. 110752.

    Article  CAS  Google Scholar 

  13. N. Wang, J.G. Gao, S.L. Yang, S.F. Yang, M. Liu, W. Liu, and J.L. Qu: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1474–83.

    Article  Google Scholar 

  14. Y. Li, Y. Tan, X. You, H. Cui, P. Li, Y. Wang, and Q. You: Vacuum, 2021, vol. 189(24–26), p. 110212.

    Article  CAS  Google Scholar 

  15. V.V. Sidorov and P.G. Min: Russ. Metall., 2014, vol. 2014, pp. 982–86.

    Article  Google Scholar 

  16. S.F. Yang, P. Zhao, S.L. Yang, W. Liu, J.S. Li, and L. Zheng: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 760–69.

    Article  Google Scholar 

  17. J.H. Cho, J. Martinsson, D. Sichen, and J.H. Park: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3660–70.

    Article  Google Scholar 

  18. S. Utada, Y. Joh, M. Osawa, et al.: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4029–41.

    Article  CAS  Google Scholar 

  19. P. Zhang, W.Y. Gui, M. Jiang, and B.L. Luan: Metall. Mater. Trans. A, 2022, vol. 53, pp. 2259–69.

    Article  CAS  Google Scholar 

  20. R. Rahimi, M. N. Ahmadabadi: Proc. EPD Congr. 2012 and TMS 2012 Annual Meeting and Exhibition, Wiley, Orlando, New York, 2012, pp. 417–24.

  21. A. Mitchell and E.A. Loria, eds.: Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, 1994, pp. 109–23.

    Google Scholar 

  22. R. Soundararajan: The Uinversity of British Columnia, 1998.

  23. A. Mitchell: High Temp. Mater. Process., 2005, vol. 24, pp. 101–09.

    Article  CAS  Google Scholar 

  24. C. Yuan, J. Guo, G. Li, L. Zhou, Y. Ge, and W. Wang: Chin. J. Nonferrous Met., 2011, vol. 21, pp. 733–46.

    Article  CAS  Google Scholar 

  25. M. Zhang, C. Liu, and S. Wang: Adv. Mater. Res., 2012, vol. 538–541, pp. 1187–91.

    Google Scholar 

  26. L. Gong, B. Chen, Y. Yang, Z. Du, and K. Liu: Mater. Sci. Eng. A, 2017, vol. 701, pp. 111–19.

    Article  CAS  Google Scholar 

  27. M. Moshtaghi and M. Safyari: Vacuum, 2019, vol. 169, p. 108890.

    Article  CAS  Google Scholar 

  28. X. Gao, L. Zhang, X. Chen, Y. Luan, and X. Qu: Mater. Char., 2020, vol. 167, p. 110492.

    Article  CAS  Google Scholar 

  29. J. Wang, L. Wang, J. Li, C. Chen, S. Yang, and X. Li: J. Alloys Compd., 2022, vol. 906, p. 164281.

    Article  CAS  Google Scholar 

  30. F. Yang, J. Cao, L. Shi, J. Yu, K. Deng, and Z. Ren: ISIJ Int., 2023, vol. 63(3), pp. 436–47.

    Article  CAS  Google Scholar 

  31. Q.F. Shu, V.V. Visuri, T. Alatarvas, and T. Fabritius: Metall. Mater. Trans. B, 2022, vol. 53B(4), pp. 2321–33.

    Article  Google Scholar 

  32. A. Umbrashko, E. Baake, B. Nacke, and A. Jakovics: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 831–38.

    Article  CAS  Google Scholar 

  33. E. Baake, A. Umbrashko, and A. Jakovics: Steel Res. Int., 2007, vol. 78, pp. 413–18.

    Article  CAS  Google Scholar 

  34. M. Ščepanskis, A. Jakovičs, E. Baake, and B. Nacke: Steel Res. Int., 2015, vol. 86, pp. 169–74.

    Article  Google Scholar 

  35. A. Asad, C. Kratzsch, S. Dudczig, C.G. Aneziris, and R. Schwarze: Int. J. Heat Fluid Flow, 2016, vol. 62, pp. 299–312.

    Article  Google Scholar 

  36. A. Asad, K. Bauer, K. Chattopadhyay, and R. Schwarze: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1378–87.

    Article  Google Scholar 

  37. P. Bulinski, J. Smolka, S. Golak, R. Przylucki, M. Palacz, G. Siwiec, B. Melka, and L. Blacha: Int. J. Heat Mass Transf., 2018, vol. 126B, pp. 980–92.

    Article  Google Scholar 

  38. A. Asad and R. Schwarze: Steel Res. Int., 2021, vol. 92, p. 2100122.

    Article  CAS  Google Scholar 

  39. A.V. Perminov and I.L. Nikulin: J. Eng. Phys. Thermophys., 2016, vol. 89, pp. 397–409.

    Article  CAS  Google Scholar 

  40. Y. Li, Y. Tan, X.G. You, H.Y. Cui, P.T. Li, Y. Wang, and Q.F. You: Vacuum, 2021, vol. 189, p. 110212.

    Article  CAS  Google Scholar 

  41. J.P. Niu and Z.Q. Hu: Adv. Mater. Res., 2011, vol. 284–286, pp. 2433–36.

    Article  Google Scholar 

  42. K. Qian, B. Chen, L. Zhang, Z. Du, and K. Liu: Vacuum, 2020, vol. 179, p. 109521.

    Article  CAS  Google Scholar 

  43. A. Simkovich: JOM, 1966, vol. 18, pp. 504–12.

    Article  CAS  Google Scholar 

  44. F. Takahashi, Y. Momoi, K. Kajikawa, and K. Oikawa: ISIJ Int., 2016, vol. 56, pp. 1746–50.

    Article  CAS  Google Scholar 

  45. S. Yang, S. Yang, J. Qu, J. Du, Y. Gu, P. Zhao, and N. Wang: J. Iron Steel Res. Int., 2021, vol. 28, pp. 921–37.

    Article  CAS  Google Scholar 

  46. M. Kirpo, A. Jakovics, E. Baake, and B. Nacke: Magnetohydrodynamics, 2006, vol. 42, pp. 207–18.

    Article  Google Scholar 

  47. E.S. Machlin: TMS-AIME, 1960, vol. 218, pp. 314–26.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (2021YFB3700402), National Natural Science Foundation of China (51974020).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufeng Yang or Wei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Gao, J., Yang, S. et al. Effect of Revert Addition on the Nitrogen Removal From Liquid Superalloy During Vacuum Induction Melting Process: Experimental and Simulation Studies. Metall Mater Trans B 55, 431–445 (2024). https://doi.org/10.1007/s11663-023-02968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02968-1

Navigation