Skip to main content
Log in

Oxidation damage zone formed in creep fatigue crack growth of GH4169 alloy at 650 °C

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In the creep fatigue crack growth of GH4169 alloy, oxidation is a prominent damage source, which is mainly manifested as the oxidation damage zone in front of crack tip. In order to investigate the property of the oxidation damage zone formed in the creep fatigue crack growth, crack growth tests of directly aged GH4169 alloy were conducted at 650 °C in air under various load conditions. Interrupted tests were performed to observe the damage characteristics at crack tip. Block tests were systematically executed to quantify the dependency of oxidation damage zone size on load and holding time. The crack propagation of the GH4169 alloy has a close relationship with grain boundary oxidation at 650 °C. An oxidation damage zone in front of crack tip includes intergranular microcracks and oxidised but uncracked grain boundaries. Its size has been calculated from transient crack growth rate and described as a function of maximum stress intensity factor and holding time. Based on oxidation damage zone size, a novel model has been developed to predict the creep fatigue crack growth rate of the GH4169 alloy at 650 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G.J. Deng, S.T. Tu, X.C. Zhang, Q.Q. Wang, C.H. Qin, Eng. Fract. Mech. 134 (2015) 433–450.

    Article  Google Scholar 

  2. X.C. Zhang, H.C. Li, X. Zeng, S.T. Tu, C.C. Zhang, Q.Q. Wang, Mater. Sci. Eng. A 682 (2017) 12–22.

    Article  Google Scholar 

  3. E. Hosseini, V.A. Popovich, Addit. Manuf. 30 (2019) 100877.

    Google Scholar 

  4. H. Qi, M. Azer, A. Ritter, Metall. Mater. Trans. A 40 (2009) 2410–2422.

    Article  Google Scholar 

  5. V. Shlyannikov, A. Sulamanidze, R. Yarullin, Eng. Fail. Anal. 131 (2022) 105886.

    Article  Google Scholar 

  6. U. Zerbst, G. Bruno, J.Y. Buffière, T. Wegener, T. Niendorf, T. Wu, X. Zhang, N. Kashaev, G. Meneghetti, N. Hrabe, M. Madia, T. Werner, K. Hilgenberg, M. Koukolíková, R. Procházka, J. Džugan, B. Möller, S. Beretta, A. Evans, R. Wagener, K. Schnabel, Prog. Mater. Sci. 121 (2021) 100786.

    Article  Google Scholar 

  7. R.Z. Wang, X.C. Zhang, S.T. Tu, S.P. Zhu, C.C. Zhang, Int. J. Fatigue 90 (2016) 12–22.

    Article  Google Scholar 

  8. G.J. Deng, S.T. Tu, X.C. Zhang, J. Wang, C.C. Zhang, X.Y. Qian, Y.N. Wang, Eng. Fract. Mech. 153 (2016) 35–49.

    Article  Google Scholar 

  9. L. Liu, Y. Gao, X. Wu, M. Wang, J. Du, Int. J. Fract. 236 (2022) 161–173.

    Article  Google Scholar 

  10. J. Saarimäki, J. Moverare, R. Eriksson, S. Johansson, Mater. Sci. Eng. A 612 (2014) 398–405.

    Article  Google Scholar 

  11. E. Fessler, E. Andrieu, V. Bonnand, V. Chiaruttini, S. Pierret, Int. J. Fatigue 96 (2017) 17–27.

    Article  Google Scholar 

  12. D. Hu, X. Wang, J. Mao, R. Wang, Front. Mech. Eng. 14 (2019) 369–376.

    Article  Google Scholar 

  13. D. Gustafsson, J.J. Moverare, S. Johansson, K. Simonsson, M. Hörnqvist, T. Månsson, S. Sjöström, Int. J. Fatigue 33 (2011) 1461–1469.

    Article  Google Scholar 

  14. M. Wang, J. Du, Q. Deng, Mater. Sci. Eng. A 812 (2021) 140903.

    Article  Google Scholar 

  15. C.J. McMahon Jr., Scripta Mater. 54 (2006) 305–307.

    Article  Google Scholar 

  16. J.A. Pfaendtner, C.J. McMahon Jr., Acta Mater. 49 (2001) 3369–3377.

    Article  Google Scholar 

  17. H.S. Kitaguchi, H.Y. Li, H.E. Evans, R.G. Ding, I.P. Jones, G. Baxter, P. Bowen, Acta Mater. 61 (2013) 1968–1981.

    Article  Google Scholar 

  18. L. Ma, K.M. Chang, Scripta Mater. 48 (2003) 1271–1276.

    Article  Google Scholar 

  19. L. Viskari, Y. Cao, M. Norell, G. Sjöberg, K. Stiller, Mater. Sci. Eng. A 528 (2011) 2570–2580.

    Article  Google Scholar 

  20. L. Viskari, M. Hörnqvist, K.L. Moore, Y. Cao, K. Stiller, Acta Mater. 61 (2013) 3630–3639.

    Article  Google Scholar 

  21. H. Ghonem, T. Nicholas, A. Pineau, Fatigue Fract. Eng. Mater. Struct. 16 (1993) 577–590.

    Article  Google Scholar 

  22. R. Jiang, D.J. Bull, D. Proprentner, B. Shollock, P.A.S. Reed, Int. J. Fatigue 99 (2017) 175–186.

    Article  Google Scholar 

  23. D.G. Leo Prakash, M.J. Walsh, D. MacLachlan, A.M. Korsunsky, Int. J. Fatigue 31 (2009) 1966–1977.

    Article  Google Scholar 

  24. J.D. Pribe, H.E. Ostergaard, T. Siegmund, J.J. Kruzic, Fatigue Fract. Eng. Mater. Struct. 45 (2022) 2873–2889.

    Article  Google Scholar 

  25. R. Wanhill, Int. J. Fatigue 24 (2002) 545–555.

    Article  Google Scholar 

  26. G.Z. Wang, X.L. Liu, F.Z. Xuan, S.T. Tu, Int. J. Solids Struct. 47 (2010) 51–57.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFF0609300) and the National Major Science and Technology Projects of China (J2019-VI-0021-0137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-fei Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Lz., Gao, Yf., Du, Jh. et al. Oxidation damage zone formed in creep fatigue crack growth of GH4169 alloy at 650 °C. J. Iron Steel Res. Int. 30, 2582–2592 (2023). https://doi.org/10.1007/s42243-023-01044-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01044-x

Keywords

Navigation