Skip to main content
Log in

Mechanism of ferrite nucleation induced by Y2O2S inclusion in low carbon steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To reveal the mechanism of ferrite nucleation induced by Y2O2S inclusion in steel, the work of adhesion, interfacial energy, structure stability and electronic properties of Fe(111)/Y2O2S(001) interfaces with various terminations were first investigated using the first-principles calculations. Secondly, the steels with and without yttrium were prepared, while the rare earth yttrium-based inclusions in low carbon steel were characterized using an electron probe micro-analyzer, and the grain size of steel was analyzed using a scanning electron microscope with electron backscattered diffraction. The results show that the bonding strength of Fe/Y2O2S interfaces with S- and Y-terminations is stronger than that of the interface with O-terminations. The Fe–hcp–S interfaces with S-termination have the highest work of adhesion (4.01 J/m2) and the lowest interface distance (1.323 Å). The Fe–hcp–S interface exhibits the highest stability, and its interfacial bonding force is mainly attributed to the strong hybridization of Fe-3d and S-2p orbitals in the energy range of − 7.5–0 eV. Moreover, the interfacial energy of Fe–hcp–S is substantially lower than those of the ferrite(s)/Fe(L) interface and the ferrite–austenite interface, suggesting that Y2O2S inclusions in steel can efficiently promote ferrite nucleation. The experimental observations demonstrate that the ferrite grain size of steel containing 0.03 wt.% Y is much more refined than that of the steel without yttrium, and the average grain size of steel with and without Y is 102 and 258 μm, respectively. This indicates that the results of our calculations match with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Zhang, W. Wang, H. Fu, J. Xie, Mater. Sci. Eng. A 530 (2011) 519–524.

    Article  Google Scholar 

  2. H.Z. Li, H.T. Liu, Y. Liu, Z.Y. Liu, G.M. Cao, Z.H. Luo, F.Q. Zhang, S.L. Chen, L. Lyu, G.D. Wang, J. Magn. Magn. Mater. 370 (2014) 6–12.

    Article  Google Scholar 

  3. H.Z. Li, H.T. Liu, X.L. Wang, G.M. Cao, C.G. Li, Z.Y. Liu, G.D. Wang, Mater. Lett. 165 (2016) 5–8.

    Article  Google Scholar 

  4. Y. Liu, C. Zhu, L. Huang, X. Chen, G. Li, JOM 74 (2022) 2645–2655.

    Article  Google Scholar 

  5. A. Basso, I. Toda-Caraballo, D. San-Martín, F.G. Caballero, J. Mater. Res. Technol. 9 (2020) 3013–3025.

    Article  Google Scholar 

  6. S. Fukumoto, A Mitchell, in: Proceedings of the 1991 Vacuum Metallurgy Conference on the Melting and Processing of Specialty Materials, I&SS, Inc., Pittsburgh, USA, 1991, pp. 3–7.

  7. Z.H. Song, H.Y. Song, H.T. Liu, Mater. Sci. Eng. A 800 (2021) 140282.

    Article  Google Scholar 

  8. H. Wang, Y.P. Bao, J.G. Zhi, C.Y. Duan, S. Gao, M. Wang, ISIJ Int. 61 (2021) 657–666.

    Article  Google Scholar 

  9. W.C. Jiao, H.B. Li, H. Feng, Z.H. Jiang, L.F. Xia, S.C. Zhang, H.C. Zhu, W. Wu, Metall. Mater. Trans. B 51 (2020) 2240–2251.

    Article  Google Scholar 

  10. R. Geng, J. Li, C. Shi, Ironmak. Steelmak. 48 (2021) 796–802.

    Article  Google Scholar 

  11. R. Geng, J. Li, C. Shi, J. Zhi, B. Lu, Mater. Sci. Eng. A 840 (2022) 142919.

    Article  Google Scholar 

  12. Y. Xie, M. Song, B. Wang, H. Zhu, Z. Xue, A. Mayerhofer, S.K. Michelic, C. Bernhard, J.L. Schenk, Metall. Mater. Trans. B 52 (2021) 2101–2110.

    Article  Google Scholar 

  13. M. Song, B. Song, S. Zhang, Z. Xue, Z. Yang, R. Xu, ISIJ Int. 57 (2017) 1261–1267.

    Article  Google Scholar 

  14. M. Song, B. Song, Z. Yang, S. Zhang, C. Hu, High Temp. Mater. Process. 36 (2017) 683–691.

    Article  Google Scholar 

  15. Z. Adabavazeh, W.S. Hwang, Y.H. Su, Sci. Rep. 7 (2017) 46503.

    Article  Google Scholar 

  16. J.S. Park, C. Lee, J.H. Park, Metall. Mater. Trans. B 43 (2012) 1550–1564.

    Article  Google Scholar 

  17. Y.C. Yu, H. Li, S.B. Wang, Metall. Res. Technol. 114 (2017) 410.

    Article  Google Scholar 

  18. X. Jiao, W. Fu, Z. Shi, Z. Li, Y. Zhou, X. Xing, Z. Wang, Q. Yang, J. Alloy. Compd. 831 (2020) 154867.

    Article  Google Scholar 

  19. J. Yang, J. Huang, D. Fan, S. Chen, X. Zhao, Appl. Surf. Sci. 384 (2016) 207–216.

    Article  Google Scholar 

  20. Y. Hou, W. Zheng, Z. Wu, G. Li, N. Moelans, M. Guo, B.S. Khan, Acta Mater. 118 (2016) 8–16.

    Article  Google Scholar 

  21. C. Zou, J. Li, L. Zhu, Y. Zhang, G. Yao, B. Tang, J. Wang, H. Kou, H. Song, W.Y. Wang, Intermetallics 133 (2021) 107173.

    Article  Google Scholar 

  22. X. Zhang, S. Wang, Nanomaterials 11 (2021) 738.

    Article  Google Scholar 

  23. S.D. Park, S.Y. Kim, D. Kim, Mater. Today Commun. 26 (2021) 102107.

    Article  Google Scholar 

  24. H.H. Xiong, H.H. Zhang, H.N. Zhang, Y. Zhou, J. Iron Steel Res. Int. 24 (2017) 328–334.

    Article  Google Scholar 

  25. X. Zhao, J. Zhang, S. Liu, C. Zhao, C. Wang, X. Ren, Q. Yang, Mater. Des. 110 (2016) 644–652.

    Article  Google Scholar 

  26. S. Tang, L. Xu, B. Peng, F. Xiong, T. Chen, X. Luo, X. Huang, H. Li, J. Zeng, Z. Ma, L.L. Wang, Appl. Surf. Sci. 575 (2022) 151655.

    Article  Google Scholar 

  27. L. Xu, J. Zeng, Q. Li, X. Luo, T. Chen, J. Liu, L.L. Wang, Chin. Chem. Lett. 33 (2022) 3947–3950.

    Article  Google Scholar 

  28. G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758–1775.

    Article  Google Scholar 

  29. J. Paier, R. Hirschl, M. Marsman, G. Kresse, J. Chem. Phys. 122 (2005) 234102.

    Article  Google Scholar 

  30. J. Zeng, L. Xu, K. Dong, K. Yang, L.L. Wang, Adv. Theory Simul. 4 (2021) 2100169.

    Article  Google Scholar 

  31. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188–5192.

    Article  MathSciNet  Google Scholar 

  32. M. Methfessel, A.T. Paxton, Phys. Rev. B 40 (1989) 3616–3621.

    Article  Google Scholar 

  33. K. Momma, F. Izumi, J. Appl. Crystallogr. 44 (2011) 1272–1276.

    Article  Google Scholar 

  34. D. Sun, J. Ding, Y. Yang, P. Zhang, J. Zhao, Int. J. Hydrog. Energy 44 (2019) 17105–17113.

    Article  Google Scholar 

  35. D. Sun, R. Li, Y. Yang, J. Ding, P. Zhang, J. Zhao, Nucl. Mater. Energy 27 (2021) 100956.

    Article  Google Scholar 

  36. M.E. Straumanis, D.C. Kim, Int. J. Mater. Res. 60 (1969) 272–277.

    Article  Google Scholar 

  37. T.W. Chou, S. Mylswamy, R.S. Liu, S.Z. Chuang, Solid State Commun. 136 (2005) 205–209.

    Article  Google Scholar 

  38. H. Xiong, C. Cao, G. Chen, B. Liu, Surf. Interfaces 27 (2021) 101467.

    Article  Google Scholar 

  39. J. Yang, P. Zhang, Y. Zhou, J. Guo, X. Ren, Y. Yang, Q. Yang, J. Alloy. Compd. 556 (2013) 160–166.

    Article  Google Scholar 

  40. Y. Wang, X. Liu, Q. Yang, Y. Liu, Z. Li, B. Guo, H. Mao, R.D.K. Misra, H. Xu, AIP Adv. 9 (2019) 125313.

    Article  Google Scholar 

  41. B.L. Bramfitt, Metall. Trans. 1 (1970) 1987–1995.

    Article  Google Scholar 

  42. L. Zhong, Z. Wang, R. Chen, J. He, Steel Res. Int. 92 (2021) 2100198.

    Article  Google Scholar 

  43. X. He, J. Hu, Z. Zhang, W. Liu, K. Song, J. Meng, Surf. Interfaces 28 (2022) 101585.

    Article  Google Scholar 

  44. X. Huang, L. Xu, H. Li, S. Tang, Z. Ma, J. Zeng, F. Xiong, Z. Li, L.L. Wang, Appl. Surf. Sci. 570 (2021) 151207.

    Article  Google Scholar 

  45. H. Zhang, J. Wang, W. Huang, L. Wang, Z. Lu, Surf. Interfaces 30 (2022) 101833.

    Article  Google Scholar 

  46. Z. Shi, S. Liu, Y. Zhou, X. Xing, X. Ren, Q. Yang, J. Alloy. Compd. 773 (2019) 264–276.

    Article  Google Scholar 

  47. S. Niknafs, R. Dippenaar, ISIJ Int. 54 (2014) 526–532.

    Article  Google Scholar 

  48. H. Jin, I. Elfimov, M. Militzer, J. Appl. Phys. 123 (2018) 085303.

    Article  Google Scholar 

  49. S. Fukumoto, T. Okane, T. Umeda, W. Kurz, ISIJ Int. 40 (2000) 677–684.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (No. 52074135), Jiangxi Provincial Natural Science Foundation (No. 20224ACB214011), Youth Jinggang Scholars Program in Jiangxi Province (QNJG2020049) and Ganzhou Key Scientific and Technological Research and Development Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-hui Zhang or Hui-hui Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no known financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hh., Xiong, Hh., Qin, J. et al. Mechanism of ferrite nucleation induced by Y2O2S inclusion in low carbon steel. J. Iron Steel Res. Int. 30, 1291–1299 (2023). https://doi.org/10.1007/s42243-023-00986-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00986-6

Keywords

Navigation