Skip to main content
Log in

Effects of nano-ceramic additives on high-temperature mechanical properties and corrosion behavior of 310S austenitic stainless steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A novel approach to reduce Ni content for the 310S austenitic stainless steel was proposed. The nano-ceramic additive (L) was applied to 310S steel to replace part of Ni element and reduce the cost. By means of thermal simulation, X-ray diffraction, field emission scanning electron microscopy, and electron backscattered diffraction, the effects of nano-ceramic additives on high-temperature mechanical properties and corrosion behavior of the 310S steel were studied. The results indicate that the morphology and density of the (Fe, Cr)23C6 carbides are varied, which play an important role in the high-temperature mechanical properties and corrosion behavior. After adding nano-ceramic additives, the high-temperature tensile strength and yield strength are improved simultaneously, in spite of a slight decrease in the total elongation. During high-temperature corrosion process, the mass gain of all the samples is parabolic with time. The mass gain is increased in the 310S steel with nano-ceramic additive, while the substrate thickness is significantly larger than 310S steel. The more stable and adherent FeCr2O4 spinel form is the reason why the high-temperature corrosion resistance was increased. The (Fe, Cr)23C6 carbides distribution along grain boundaries is detrimental to the high-temperature corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z. Zhang, Z.F. Hu, H.Y. Tu, S. Schmauder, G.X. Wu, Mater. Sci. Eng. A 681 (2017) 74–84.

    Article  Google Scholar 

  2. Y. Xiong, T.T. He, J.B. Wang, Y. Lu, L.F. Chen, F.Z. Ren, Y.L. Liu, A.A. Volinsky, Mater. Des. 88 (2015) 398–405.

    Article  Google Scholar 

  3. Y.G. Yang, W.Z. Mu, X.Q. Li, H.T. Jiang, M. Wang, Z.L. Mi, X.P. Mao, J. Iron Steel Res. Int. 29 (2022) 316–326.

    Article  Google Scholar 

  4. X.L. Song, C.H. Huang, J. Jia, J. Liu, J. Iron Steel Res. Int. 29 (2022) 1004–1011.

    Article  Google Scholar 

  5. X.G. Li, Z.P. Cai, X. Chen, S.Q. Dong, W.H. Cai, Y. Zhang, S.L. Li, K.J. Li, S.S. Rui, J.L. Pan, J. Iron Steel Res. Int. 28 (2021) 1439–1450.

    Article  Google Scholar 

  6. A. Col, V. Parry, C. Pascal, Corros. Sci. 114 (2017) 17–27.

    Article  Google Scholar 

  7. D. Singh, F. Cemin, M.J.M. Jimenez, V. Antunes, F. Alvarez, D. Orlov, C.A. Figueroa, S.S. Hosmani, Appl. Surf. Sci. 581 (2022) 152437.

    Article  Google Scholar 

  8. H.B. Wu, D. Wang, P.C. Zhang, J.M. Liang, S. Liu, D. Tang, J. Iron Steel Res. Int. 23 (2016) 231–237.

    Article  Google Scholar 

  9. A. Hayashi, N. Hiraide, Y. Inoue, Oxid. Met. 85 (2016) 87–101.

    Article  Google Scholar 

  10. N. Birks, G.H. Meier, F.S. Pettit, High-Temperature oxidation of metals, 2nd ed., Cambridge University Press, New York, USA, 2006.

    Book  Google Scholar 

  11. F. Yang, Y.L. Zhang, Y.N. Ren, W.M. Li, Welding of new heat resistant steel, China Electric Power Press, Beijing, China, 2006.

    Google Scholar 

  12. W.G. Zhai, W. Zhou, S.M.L. Nai, Mater. Sci. Eng. A 832 (2022) 142460.

    Article  Google Scholar 

  13. X. Han, Z.P. Zhang, S.J. Thrush, G.C. Barber, H.W. Qu, Wear 452–453 (2020) 203264.

    Article  Google Scholar 

  14. H. Zhang, W.X. Wang, F. Chang, C.L. Li, S.L. Shu, Z.F. Wang, X. Han, Q. Zou, F. Qiu, Q.C. Jiang, Mater. Sci. Eng. A 822 (2021) 141693.

    Article  Google Scholar 

  15. N. Li, C.X. Cui, Y.Q. Zhao, Q.X. Zhang, L.N. Bai, Mater. Sci. Eng. A 738 (2018) 63–74.

    Article  Google Scholar 

  16. Y.L. Han, T.L. Sun, X.G. Yuan, Ceramic nanoparticles additions for heat-resistant steel and preparation process, Chinese Patent, CN1876877, 2006.

  17. D.Y. Qu, A high-temperature heat-resistant alloy and its preparation method, Chinese Patent, CN103088265B, 2015.

  18. Z.Y. Zhang, Y.L. Gong, X.L. Wan, C.Z. Yang, Y.P. Xiao, Modern Cast Iron 29 (2009) No. 5, 50–52.

    Google Scholar 

  19. X.H. Liu, F.J. Wu, H.B. Wu, X.P. Ren, Hot Working Technology 42 (2013) No. 14, 60–63+70.

  20. L.G. Zheng, X.Q. Hu, X.H. Kang, D.Z. Li, Acta Metall. Sin. 49 (2013) 1081–1088.

    Article  Google Scholar 

  21. Y.H. Deng, Y.H. Yang, C.B. Pu, K. Ni, X.Y. Pan, Acta Metall. Sin. 56 (2020) 949–959.

    Google Scholar 

  22. J. Li, Study on the preparation, structure and properties of new resource-saving high-Mn-N duplex stainless steels, Shanghai University, Shanghai, China, 2011.

    Google Scholar 

  23. Y.H. Park, Z.H. Lee, Mater. Sci. Eng. A 297 (2001) 78–84.

    Article  Google Scholar 

  24. S. Wang, Y. Wu, C.S. Ni, Y. Niu, Corros. Sci. 51 (2009) 511–517.

    Article  Google Scholar 

  25. J. Bischoff, A.T. Motta, J. Nucl. Mater. 424 (2012) 261–276.

    Article  Google Scholar 

  26. D. Young, High temperature oxidation and corrosion of metals, 2nd ed., Elsevier, Oxford, 2008.

    Google Scholar 

  27. M. Nezakat, H. Akhiani, S. Penttilä, J. Szpunar, ASME J. Nuclear Rad. Sci. 2 (2016) 021008.

    Article  Google Scholar 

  28. X.W. Cheng, Z.Y. Jiang, D.B. Wei, J.W. Zhao, B.J. Monaghan, R.J. Longbottom, L.Z. Jiang, Met. Mater. Int. 21 (2015) 251–259.

    Article  Google Scholar 

  29. L. Sun, J. Alloy. Compd. 875 (2021) 160065.

    Article  Google Scholar 

  30. D. West, J. Hulance, R.L. Higginson, G.D. Wilcox, Mater. Sci. Tech.-Lond. 29 (2013) 835–842.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Technology Research and Development Program of Shandong (2019TSLH0103) and the Fundamental Research Funds for the Central Universities (FRF-TP-19-009A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-li Mi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Wang, M., Mi, Zl. et al. Effects of nano-ceramic additives on high-temperature mechanical properties and corrosion behavior of 310S austenitic stainless steel. J. Iron Steel Res. Int. 30, 591–600 (2023). https://doi.org/10.1007/s42243-022-00828-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00828-x

Keywords

Navigation