Skip to main content
Log in

Investigation on bonding interfaces of an SA508 steel billet manufactured by additive forging

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

An experimental steel billet of SA508 reactor pressure vessel material was manufactured by the additive forging method, and microstructure and mechanical properties of the hot-compression bonding interface were systematically investigated. The result indicated that oxidation levels of bonding interfaces were well controlled using vacuum electron beam welding. It was easy to discriminate interfaces from base materials during the optical microstructure observation, since interfaces were characterized by grain or phase boundaries in a straight line. Test results of uniaxial tensile experiments (at 20 and 350 °C) and Charpy V-notched impact tests (at 0 and 20 °C) showed that fracture behaviour of all those samples appeared at the base material, and bonding interfaces showed advantage of strength and toughness at the forge bonding state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.L. Schulz, Nucl. Eng. Des. 236 (2006) 1547–1557.

    Article  Google Scholar 

  2. P. Tusheva, E. Altstadt, H.G. Willschütz, E. Fridman, F.P. Weiß, Ann. Nucl. Energy 75 (2015) 249–260.

    Article  Google Scholar 

  3. B.S. Lee, M.C. Kim, J.H. Yoon, J.H. Hong, Int. J. Pres. Ves. Pip. 87 (2010) 74–80.

    Article  Google Scholar 

  4. C. Maidorn, D. Blind, Nucl. Eng. Des. 84 (1985) 285–296.

    Article  Google Scholar 

  5. D.Z. Li, X.Q. Chen, P.X. Fu, X.P. Ma, H.W. Liu, Y. Chen, Y.F. Cao, Y.K. Luan, Y.Y. Li, Nat. Commun. 5 (2014) 5572.

    Article  Google Scholar 

  6. M.C. Flemings, ISIJ Int. 40 (2000) 833–841.

    Article  Google Scholar 

  7. E.J. Pickering, H.K.D.H. Bhadeshia, J. Pres. Ves. Technol. 136 (2014) 031403.

    Article  Google Scholar 

  8. P. Bowen, S.G. Druce, J.F. Knott, Acta Metall. 34 (1986) 1121–1131.

    Article  Google Scholar 

  9. S. Kim, Y.R. Im, S. Lee, H.C. Lee, Y.J. Oh, J.H. Hong, Metall. Mater. Trans. A 32 (2001) 903–911.

    Article  Google Scholar 

  10. Y.R. Im, Y.J. Oh, B.J. Lee, J.H. Hong, H.C. Lee, J. Nucl. Mater. 297 (2001) 138–148.

    Article  Google Scholar 

  11. H. Zhang, J.L. Li, F. Sun, J.T. Xiong, F.S. Zhang, Aeron. Manuf. Technol. 61 (2018) 68–75.

    Google Scholar 

  12. S.I. Nishida, T. Matsuoka, T. Wada, JFE GIHO (2004) No. 5, 1–7.

    Google Scholar 

  13. Z.C. Zhu, Y. He, X.J. Zhang, H.Y. Liu, X. Li, Mater. Sci. Eng. A 669 (2016) 344–349.

    Article  Google Scholar 

  14. K. Gao, X. Zhang, B.X Liu, J.N. He, J.H. Feng, P.G. Ji, W. Fang, F.X. Yin, Metals 10 (2020) 4.

    Article  Google Scholar 

  15. B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, D.Z. Li, Y.Y. Li, Mater. Des. 157 (2018) 437–446.

    Article  Google Scholar 

  16. B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, H.Y. Jiang, D.Z. Li, Y.Y. Li, Corros. Sci. 147 (2019) 41–52.

    Article  Google Scholar 

  17. Y. Zhao, Z.J. Jin, B. Xu, Q.Q. Wang, J. Feng, X.R. Li, R.K. Kang, Z.C. Wei, J. Guo, Mater. Des. 210 (2021) 110025.

    Article  Google Scholar 

  18. L.Y. Zhou, S.B. Feng, M.Y. Sun, B. Xu, D.Z. Li, J. Mater. Sci. Technol. 35 (2019) 1671–1680.

    Article  Google Scholar 

  19. D.S. Qian, W.T. Li, J.D. Deng, F. Wang, M. Wu, J. Mater. Res. Technol. 18 (2022) 2140–2151.

    Article  Google Scholar 

  20. M.Y. Sun, B. Xu, B.J. Xie, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 71 (2021) 84–86.

    Article  Google Scholar 

  21. G.L. Thinnes, G.E. Korth, S.A. Chavez, T.J. Walker, Nucl. Eng. Des. 148 (1994) 343–350.

    Article  Google Scholar 

  22. M.F. Yu, Y.J. Chao, Z. Luo, J. Pressure Vessel Technol. 137 (2015) 031402.

    Article  Google Scholar 

  23. H. Pous-Romero, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 45 (2014) 4897–4906.

    Article  Google Scholar 

  24. H.K.D.H. Bhadeshia, Bainite in steels: transformation, microstructure and properties, 2nd ed., IOM Communications, London, UK, 2001.

  25. G.H. Yan, L.Z. Han, C.W. Li, X.M. Luo, J.F. Gu, J. Nucl. Mater. 483 (2017) 167–175.

    Article  Google Scholar 

  26. S. Xu, X.Q. Wu, E.H. Han, W. Ke, J. Mater. Sci. 44 (2009) 2882–2889.

    Article  Google Scholar 

  27. X.Q. Wu, I.S. Kim, Mater. Sci. Eng. A 348 (2003) 309–318.

    Article  Google Scholar 

Download references

Acknowledgements

This highlight was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702905), the Major Science and Technology Program of Heilongjiang (Grant No. 2019ZX10A02), and Heilongjiang "Head Goose" Team.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-sheng Wang or Zhi-chao Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xj., Wang, Ts., Zhu, Zc. et al. Investigation on bonding interfaces of an SA508 steel billet manufactured by additive forging. J. Iron Steel Res. Int. 29, 2016–2023 (2022). https://doi.org/10.1007/s42243-022-00803-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00803-6

Keywords

Navigation