Skip to main content
Log in

Multi-scale analysis of void evolution in large-section plastic mold steel during multi-directional forging

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The void evolution of large-section plastic mold steel during multi-directional forging (MDF) was investigated using multi-scale analysis. To simulate the forging process of the plastic mold steel (SDP1 steel) and realize micro-void reconstruction in a representative volume element (RVE), MDF experiment and void-characteristic evaluation of the SDP1 steel were carried out. Traditional upsetting and stretching forging (TUSF) and MDF were simulated to comparatively analyze the evolution of temperature, effective stress, and effective strain. By embedding RVE with a micro-void and using boundary condition by point tracking into the forging process, the single-void evolution in TUSF and MDF was studied. The effect of void orientation on single-void evolution was also investigated. The multi-scale analysis revealed the following results. (1) Compared with TUSF, MDF achieved a higher efficiency in void closure. (2) The closing efficiency of the void increased with the increase in angle θ (the angle between the Z and long axes of the void). (3) The closing efficiency increased with the increase in the orientation angle during the forging process. On the basis of the important role of the main stress in each forging step on the void closure, an integral formula of the main stress was proposed. When main compressive-stress integration reached − 0.4, the closed state of the void could be accurately determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. C.Y. Park, D.Y. Yang, J. Mater. Process. Technol. 67 (1997) 195–200.

    Article  Google Scholar 

  2. X.X. Zhang, Z.S. Cui, W. Chen, Y. Li, J. Mater. Process. Technol. 209 (2009) 1950–1959.

    Article  Google Scholar 

  3. E. Bagherpour, N. Pardis, M. Reihanian, R. Ebrahimi, Int. J. Adv. Manuf. Technol. 100 (2019) 1647–1694.

    Article  Google Scholar 

  4. H. Kakimoto, T. Arikawa, Y. Takahashi, T. Tanaka, Y. Imaida, J. Mater. Process. Technol. 210 (2010) 415–422.

    Article  Google Scholar 

  5. Y.S. Lee, S.U. Lee, C.J. Van Tyne, B.D. Joo, Y.H. Moon, J. Mater. Process. Technol. 211 (2011) 1136–1145.

    Article  Google Scholar 

  6. Y.D. Kim, J.R. Cho, W.B. Bae, J. Mater. Process. Technol. 211 (2011) 1005–1013.

    Article  Google Scholar 

  7. M.S. Chen, Y.C. Lin, Int. J. Plast. 49 (2013) 53–70.

    Article  Google Scholar 

  8. L. Zhang, W. Shen, C. Zhang, Q. Xu, Y. Cui, Procedia Eng. 207 (2017) 532–537.

    Article  Google Scholar 

  9. F. Faini, A. Attanasio, E. Ceretti, J. Mater. Process. Technol. 259 (2018) 235–242.

    Article  Google Scholar 

  10. C. Feng, Z. Cui, Int. J. Plast. 74 (2015) 192–212.

    Article  Google Scholar 

  11. C. Feng, Z. Cui, M. Liu, X. Shang, D. Sui, J. Liu, J. Mater. Process. Technol. 237 (2016) 371–385.

    Article  Google Scholar 

  12. C. Feng, Z. Cui, X. Shang, M. Liu, Mech. Mater. 112 (2017) 101–113.

    Article  Google Scholar 

  13. M. Saby, M. Bernacki, E. Roux, P.O. Bouchard, Comput. Mater. Sci. 77 (2013) 194–201.

    Article  Google Scholar 

  14. M.S. Chen, Y.C. Lin, K.H. Chen, Int. J. Plast. 53 (2014) 206–227.

    Article  Google Scholar 

  15. T.F. Guo, W.H. Wong, J. Mech. Phys. Solids 118 (2018) 172–203.

    Article  MathSciNet  Google Scholar 

  16. X.Z. Lu, L.C. Chan, J. Mater. Process. Technol. 258 (2018) 116–127.

    Article  Google Scholar 

  17. J. Zhao, Y. Deng, J. Tang, J. Zhang, Mater. Sci. Eng. A 798 (2020) 139927.

    Article  Google Scholar 

  18. V. Soleymani, B. Eghbali, J. Iron Steel Res. Int. 19 (2012) No. 10, 74–78.

    Article  Google Scholar 

  19. O. Sitdikov, T. Sakai, H. Miura, C. Hama, Mater. Sci. Eng. A 516 (2009) 180–188.

    Article  Google Scholar 

  20. T. Sakai, H. Miura, A. Goloborodko, O. Sitdikov, Acta Mater. 57 (2009) 153–162.

    Article  Google Scholar 

  21. X. Xia, Q. Chen, Z. Zhao, M. Ma, X. Li, K. Zhang, J. Alloy. Compd. 623 (2015) 62–68.

    Article  Google Scholar 

  22. N. Li, S.M. Xing, P.W. Bao, J. Iron Steel Res. Int. 20 (2013) No. 6, 58–62.

    Article  Google Scholar 

  23. Q. Chen, D. Shu, C. Hu, Z. Zhao, B. Yuan, Mater. Sci. Eng. A 541 (2012) 98–104.

    Article  Google Scholar 

  24. H. Miura, Y, Nakao, T. Sakai, Mater. Trans. 48 (2007) 2539.

    Article  Google Scholar 

  25. J. Zhao,Y. Deng, J. Zhang, Z. Ma, Y. Zhang, Mater. Sci. Eng. A 756 (2019) 119–128.

    Article  Google Scholar 

  26. X. Li, L. Duan, J. Li, X. Wu, Mater. Des. 66 (2015) 309–320.

    Article  Google Scholar 

  27. X.X. Zhang, X. Chen, X.C. Li, Y.S. Hu, J.W. Li, X.C. Wu, Shanghai Metals 42 (2020) No. 2, 57–62.

    Google Scholar 

  28. C. Maidorn, D. Blind, Nucl. Eng. Des. 84 (1985) 285–296.

    Article  Google Scholar 

  29. M. Tanaka, S. Ono, M. Tsuneno, J. Jpn. Soc. Technol. Plast. 27 (1986) 927–934.

    Google Scholar 

  30. M. Nakasaki, I. Takasu, H. Utsunomiya, J. Mater. Process. Technol. 177 (2006) 521–524.

    Article  Google Scholar 

  31. M. Saby, P.O. Bouchard, M. Bernacki, J. Manuf. Process. 19 (2015) 239–250.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (Grant Nos. 2016YFB0300400 and 2016YFB0300404).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Chen or Jun-wan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wu, By., Wu, Bl. et al. Multi-scale analysis of void evolution in large-section plastic mold steel during multi-directional forging. J. Iron Steel Res. Int. 29, 1961–1977 (2022). https://doi.org/10.1007/s42243-022-00792-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00792-6

Keywords

Navigation