Skip to main content
Log in

AlN precipitation during steel solidification using CA model

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on the principles of metal solidification and cellular automaton (CA), as well as AlN precipitation thermodynamics and kinetics, a CA model of interdendritic AlN precipitation was established by coupling a large-size mesh describing the dendrite growth of Fe–C–Al–N alloys and a small-size mesh representing AlN precipitation based on transient chemical equilibrium. The results of single dendrite growth stimulated by this model were compared with the Lipton–Glicksman–Kurz solution to verify the correctness of the matrix dendrite growth simulation. The AlN morphology and dimensions obtained from the CA model simulations are following the experimental results. The presence of equiaxed dendrite in the computational domain results in a significant coarsening of the columnar dendrite and a uniform solute distribution around them, and the AlN solid phase fraction decreases. Simulations of AlN precipitation at different wetting angles were also performed, and it was found that the solid phase fraction of AlN decreased with the increase in wetting angle. Thus, it is confirmed that the established model is an effective method to simulate interdendritic AlN precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Zhang, X. Zhang, Z. Guo, Y. Wang, C. Li, L. Lan, Acta Metall. Sin. (Engl. Lett.) 26 (2013) 483–488.

    Article  Google Scholar 

  2. P. Presoly, R. Pierer, C. Bernhard, Metall. Mater. Trans. A 44 (2013) 5377–5388.

    Article  Google Scholar 

  3. J.I. Jang, S. Lee, Y. Kang, Metall. Mater. Trans. B 52 (2021) 1582–1589.

    Article  Google Scholar 

  4. M. Sennour, C. Esnouf, Acta Mater. 51 (2003) 943–957.

    Article  Google Scholar 

  5. A. Tuling, B. Mintz, Mater. Sci. Technol. 32 (2015) 568–575.

    Article  Google Scholar 

  6. M.N. Wahab, M.J. Ghazali, A.R. Daud, Key Eng. Mater. 462–463 (2011) 307–312.

    Article  Google Scholar 

  7. J. Chen, C. Bao, Y. Wang, C. Suryanarayana, Acta Metall. Sin. (Engl. Lett.) 28 (2015) 1354–1363.

    Article  Google Scholar 

  8. X. Li, M. Wang, Y. Bao, J. Gong, W. Pang, JOM 71 (2019) 3135–3141.

    Article  Google Scholar 

  9. M. Rappaz, Acta Metall. Mater. 34 (1993) 93–124.

    Google Scholar 

  10. C.A. Gandin, M. Rappaz, Acta Metall. Mater. 42 (1994) 2233–2246.

    Article  Google Scholar 

  11. R. Chen, Q. Xu, B. Liu, J. Mater. Sci. Technol. 30 (2014) 1311–1320.

    Article  Google Scholar 

  12. C. Yang, Q. Xu, B. Liu, Rare Met. 39 (2019) 147–155.

    Article  Google Scholar 

  13. R. Chen, Q. Xu, B. Liu, Comput. Mater. Sci. 105 (2015) 90–100.

    Article  Google Scholar 

  14. X. Gao, X. Meng, L. Cui, K. Zhang, M. Zhu, Mater. Res. Express 7 (2020) 056505.

  15. X. Gao, X. Meng, L. Cui, M. Zhu, Mater. Res. Express 6 (2019) 096583.

  16. X. Meng, X. Gao, S. Huang, M. Zhu, Metals 8 (2018) 529–532.

    Article  Google Scholar 

  17. X. Meng, L. Cui, Y. Shi, M. Zhu, J. Iron Steel Res. Int. 28 (2021) 997–1008.

    Article  Google Scholar 

  18. J. Wang, H. Meng, J. Yang, Z. Xie, J. Comput. Sci. 48 (2021) 101265.

  19. S. Luo, W. Wang, M. Zhu, Int. J. Heat Mass Transfer 116 (2018) 940–950.

    Article  Google Scholar 

  20. W. Wang, S. Yin, S. Luo, M. Zhu, Metall. Mater. Trans. B 50 (2019) 1531–1541.

    Article  Google Scholar 

  21. K. Liu, J. Wang, Y. Yang, Y. Zhou, C. Cao, Comput. Mater. Sci. 188 (2021) 110172.

  22. A. Pineau, G. Guillemot, G. Reinhart, N. Manglinck-Noël, C. Gandin, Acta Mater. 191 (2020) 230–244.

    Article  Google Scholar 

  23. A. Choudhury, K. Reuther, E. Wesner, A. August, B. Nestler, M. Rettenmayr, Comput. Mater. Sci. 55 (2012) 263–268.

    Article  Google Scholar 

  24. C.H. Chen, A.M. Tabrizi, P.A. Geslin, A. Karma, Acta Mater. 202 (2021) 463–477.

    Article  Google Scholar 

  25. S. Liu, K. Hong, Y.C. Shin, Comput. Mater. Sci. 192 (2021) 110405.

  26. S. Pan, M. Zhu, Acta Mater. 58 (2010) 340–352.

    Article  Google Scholar 

  27. D. Sun, M. Zhu, S. Pan, D. Raabe, Acta Mater. 57 (2009) 1755–1767.

    Article  Google Scholar 

  28. M. Zhu, D. Sun, S. Pan, Q. Zhang, D. Raabe, Modell. Simul. Mater. Sci. Eng. 2 (2014) 034006.

  29. M. Zhu, S. Pan, D. Sun, H. Zhao, ISIJ Int. 50 (2010) 1851–1858.

    Article  Google Scholar 

  30. M. Hu, C. Sun, H. Fang, M. Zhu, Eur. Phys. J. E 43 (2020) 16.

    Article  Google Scholar 

  31. Q. Zhang, D. Sun, S. Pan, M. Zhu, Int. J. Heat Mass Trans. 146 (2020) 118838.

  32. N. Ren, J. Li, N. Bogdan, Comput. Mater. Sci. 180 (2020) 109714.

  33. S. Meng, A. Zhang, Z. Guo, Q. Wang, Comput. Mater. Sci. 184 (2020) 109784.

  34. J. Chen, Common use chart and thermodynamic data for steelmaking, 2nd ed., Metallurgical Industry Press, Beijing, China, 2011.

    Google Scholar 

  35. H. Suito, R. Inoue, ISIJ Int. 36 (1996) 528–536.

    Article  Google Scholar 

  36. W. Wang, S. Luo, M. Zhu, Crystals 6 (2016) 147–158.

    Article  Google Scholar 

  37. L. Beltran-sanchez, D.M. Stefanescu, Metall. Mater. Trans. A 35 (2004) 2471–2485.

    Article  Google Scholar 

  38. Q. Yong, Second phases in structural steels, Metallurgical Industry Press, Beijing, China, 2006.

    Google Scholar 

  39. S. Luo, M. Zhu, S. Louhenkilpi, ISIJ Int. 52 (2012) 823–830.

    Article  Google Scholar 

  40. J. Lipton, M.E. Glicksman, W. Kurz, Mater. Sci. Eng. 65 (1984) 57–63.

    Article  Google Scholar 

  41. Z. Deng, Y. He, J. Liu, B. Yan B, A. Mclean, Metals 9 (2019) 1091.

  42. M. Nabeel, M. Alba, N. Dpgan, Crystals 10 (2020) 1054.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 52074071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-ning Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Shi, Yh. & Meng, Xn. AlN precipitation during steel solidification using CA model. J. Iron Steel Res. Int. 29, 1789–1799 (2022). https://doi.org/10.1007/s42243-022-00766-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00766-8

Keywords

Navigation