Skip to main content
Log in

Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A two-dimensional cellular automaton–finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Yang, S.M. Xiong, and Z. Guo: Acta Mater., 2016, vol. 112, pp. 261–72.

    Article  Google Scholar 

  2. D. Szeliga, K. Kubiak, and J. Sieniawski: J. Mater. Process. Technol., 2016, vol. 234, pp. 18–26.

    Article  Google Scholar 

  3. D.V. Alexandrov and P.K. Galenko: Phys.-Usp., 2014, vol. 57, pp. 771–86.

    Article  Google Scholar 

  4. P.A. Molian and T.S. Srivatsan: J. Mater. Sci., 1990, vol. 25, pp. 3347–58.

    Article  Google Scholar 

  5. G. Salloum-Abou-Jaoude, J. Wang, L. Abou-Khalil, G. Reinhart, Z. Ren, N. Mangelinck-Noel, X. Li, Y. Fautrelle, and H. Nguyen-Thi: J. Cryst. Growth, 2015, vol. 417, pp. 25–30.

    Article  Google Scholar 

  6. N. Shevchenko, O. Roshchupkina, O. Sokolova, and S. Eckert: J. Cryst. Growth, 2015, vol. 417, pp. 1–8.

    Article  Google Scholar 

  7. A.G. Murphy, W.U. Mirihanage, D.J. Browne, and R.H. Mathiesen: Acta Mater., 2015, vol. 95, pp. 83–89.

    Article  Google Scholar 

  8. X. Zhan, Y. Wei, and Z. Dong: J. Mater. Process. Technol., 2008, vol. 208, pp. 1–8.

    Article  Google Scholar 

  9. H.B. Dong and P.D. Lee: Acta Mater., 2005, vol. 53, pp. 659–68.

    Article  Google Scholar 

  10. L. Nastac: Acta Mater., 1999, vol. 47, pp. 4253–62.

    Article  Google Scholar 

  11. J.A. Spittle and S.G.R. Brown: J. Mater. Sci., 1995, vol. 30, pp. 3989–94.

    Article  Google Scholar 

  12. M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–60.

    Article  Google Scholar 

  13. S. Pan and M. Zhu: Acta Mater., 2010, vol. 58, pp. 340–52.

    Article  Google Scholar 

  14. W.J. Zheng, Z.B. Dong, Y.H. Wei, K.J. Song, J.L. Guo, and Y. Wang: Comp. Mater. Sci., 2014, vol. 82, pp. 525–30.

    Article  Google Scholar 

  15. T. Takaki, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki: Acta Mater., 2016, vol. 118, pp. 230–43.

    Article  Google Scholar 

  16. M.J.M. Krane, D.R. Johnson, and S. Raghavan: Appl. Math. Model., 2009, vol. 33, pp. 2234–47.

    Article  Google Scholar 

  17. N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2004, vol. 194, pp. 677–96.

    Article  Google Scholar 

  18. N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2002, vol. 180, pp. 471–96.

    Article  Google Scholar 

  19. D. Li, R. Li and P. Zhang: Appl. Math. Model., 2007, vol. 31, pp. 971–82.

    Article  Google Scholar 

  20. R. Siquieri, J. Rezende, J. Kundin, and H. Emmerich: Eur. Phys. J. Special Topics, 2009, vol. 177, pp. 193–205.

    Article  Google Scholar 

  21. R. Xiao, Z. Wang, C. Zhu, L. Feng, and W. Li: J. Shanghai Jiaotong Univ. (Sci.), 2011, vol. 16, pp. 356–59.

    Article  Google Scholar 

  22. R. Rojas, T. Takaki, and M. Ohno: J. Comput. Phys., 2015, vol. 298, pp. 29–40.

    Article  Google Scholar 

  23. L. Yuan and P.D. Lee: Model. Simul. Mater. Sci., 2010, vol. 18, p. 055008.

    Article  Google Scholar 

  24. D.K. Sun, M.F. Zhu, S.Y. Pan, C.R. Yang, and D. Raabe: Comput. Math. Appl., 2011, vol. 61, pp. 3585–92.

    Article  Google Scholar 

  25. D. Sun, M. Zhu, S. Pan, and D. Raabe: Acta Mater., 2009, vol. 57, pp. 1755–67.

    Article  Google Scholar 

  26. C. Gu, Y. Wei, X. Zhan, and Y. Li: Sci. Technol. Welding Joining, 2016, vol. 22, pp. 47–58.

    Article  Google Scholar 

  27. K.J. Song, Y.H. Wei, Z.B. Dong, R. Ma, X.H. Zhan, W.J. Zheng, and K. Fang: Model. Simul. Mater. Sci., 2014, vol. 22, p. 015006.

    Article  Google Scholar 

  28. K.J. Song, Y.H. Wei, Z.B. Dong, X.H. Zhan, W.J. Zheng, and K. Fang: Comp. Mater. Sci., 2013, vol. 72, pp. 93–100.

    Article  Google Scholar 

  29. J.A. Warren and W.J. Boettinger: Acta Metall. Mater., 1995, vol. 43, pp. 689–703.

    Article  Google Scholar 

  30. X.H. Wu, G. Wang, L.Z. Zhao, D.C. Zeng, and Z.W. Liu: Comp. Mater. Sci., 2016, vol. 117, pp. 286–93.

    Article  Google Scholar 

  31. J.L. Murray: Int. Mater. Rev., 1985, vol. 30, pp. 211–34.

    Article  Google Scholar 

  32. M. Zhu and D. Stefanescu: Acta Mater., 2007, vol. 55, pp. 1741–55.

    Article  Google Scholar 

  33. M. Zhu, D. Sun, S. Pan, Q. Zhang, and D. Raabe: Model. Simul. Mater. Sci., 2014, vol. 22, p. 034006.

    Article  Google Scholar 

  34. S. Luo and M.Y. Zhu: Comp. Mater. Sci., 2013, vol. 71, pp. 10–18.

    Article  Google Scholar 

  35. L. Wei, X. Lin, M. Wang, and W. Huang: Comp. Mater. Sci., 2012, vol. 54, pp. 66–74.

    Article  Google Scholar 

  36. J. Lipton, M.E. Glicksman, and W. Kurz: Metall. Trans. A, 1987, vol. 18A, pp. 341–45.

    Article  Google Scholar 

  37. J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.

    Article  Google Scholar 

  38. L. Du and R. Zhang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2504–15.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51175253), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Fundamental Research Funds for the Central Universities (Grant No. NP2016204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renpei Liu.

Additional information

Manuscript submitted May 22, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, C., Wei, Y., Liu, R. et al. Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method. Metall Mater Trans B 48, 3388–3400 (2017). https://doi.org/10.1007/s11663-017-1060-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1060-3

Keywords

Navigation