Skip to main content
Log in

Research methods and influencing factors of interfacial heat transfer during sub-rapid solidification process of strip casting

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Interfacial heat transfer behavior between the molten steel and twin-rolls is a key issue in the strip casting process, and it has already attracted wide attention from industrial and academic communities of steel. The research methods and influencing factors on the interfacial heat transfer were summarized. Numerical simulation models, semi-industrial scale, and laboratory equipment have been developed in this field, and these methods were also improved by worldwide researchers based on the development of computer, automatic, and visual technologies. Coating properties, naturally deposited film, and casting parameters are the main factors which affect the heat transfer significantly. Although lots of research has been carried out, the internal relations among these influencing factors, interfacial heat transfer, and the quality of the strip are still worth to be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. P. Nolli, Initial solidification phenomena: factors affecting heat transfer in strip casting, Carnegie Mellon University, Pittsburgh, USA, 2007.

    Google Scholar 

  2. H. Bessemer, J. Metals 17 (1965) 1189.

    Google Scholar 

  3. P. Campbell, W. Blejde, R. Mahapatra, R. Wechsler, Metallurgist 48 (2004) 507–514.

    Article  Google Scholar 

  4. K.H. Spitzer, F. Rüppel, R. Viščorová, R. Scholz, J. Kroos, V. Flaxa, Steel Res. Int. 74 (2003) 724–731.

    Article  Google Scholar 

  5. D.J. Sosinsky, P. Campbell, R. Mahapatra, W. Blejde, F. Fisher, Metallurgist 52 (2008) 691–699.

    Article  Google Scholar 

  6. P. Campbell, R. Mahapatra, W. Blejde, R. Wechsler, G. Gillen, Rev. Met. Paris 103 (2006) 25–31.

    Article  Google Scholar 

  7. C.R. Killmore, D.G. Edelman, K.R. Carpenter, H.R. Kaul, J.G. Williams, P.C. Campbell, W.N. Blejde, Mater. Sci. Forum 654–656 (2010) 198–201.

    Article  Google Scholar 

  8. P. Campbell, W. Blejde, R. Mahapatra, G. Gillen, Iron Steelmaker 30 (2003) 15–19.

    Google Scholar 

  9. R. Wechsler, Scand. J. Metall. 32 (2003) 58–63.

    Article  Google Scholar 

  10. T. Matsushita, K. Nakayama, H. Fukase, S. Osada, IHI Eng. Rev. 42 (2009) 1–9.

    Google Scholar 

  11. H. Todoroki, N. Phinichka, ISIJ Int. 49 (2009) 1347–1355.

    Article  Google Scholar 

  12. W.L. Wang, C.Y. Zhu, J. Zeng, C. Lu, H.R. Qian, H. Xu, P.S. Lyu, Metall. Mater. Trans. A 51 (2020) 2306–2317.

    Article  Google Scholar 

  13. P.S. Lyu, W.L. Wang, C.H. Wang, L.J. Zhou, Y. Fang, J.C. Wu, Metall. Mater. Trans. A 52 (2021) 3945–3960.

    Article  Google Scholar 

  14. H.R. Qian, W.L. Wang, in: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, The Minerals, Metals & Materials Series, Springer, 2020, pp. 39–46.

  15. C.Y. Zhu, W.L. Wang, C. Lu, J. Sustain. Metall. 5 (2019) 378–390.

    Article  Google Scholar 

  16. W.L. Wang, H.R. Qian, D.W. Cai, L.J. Zhou, S. Mao, P.S. Lyu, Metall. Mater. Trans. A 52 (2021) 1799–1811.

    Article  Google Scholar 

  17. C.Y. Zhu, J. Zeng, W.L. Wang, S. Chang, C. Lu, Mater. Charact. 170 (2020) 110679.

  18. C. Lu, W.L. Wang, C.Y. Zhu, in: J. Nakano, P.C. Pistorius, C. Tamerler, H. Yasuda, Z.T. Zhang, N. Dogan, W.L. Wang, N. Saito, B. Webler (Eds.), Advanced Real Time Imaging II, The Minerals, Metals & Materials Series, Springer, 2019, pp. 111–118.

    Google Scholar 

  19. W.L. Hu, Y.X. Zhang, G. Yuan, X.M. Zhang, G.D. Wang, Steel Res. Int. 90 (2019) 1900105.

    Article  Google Scholar 

  20. X. Zhang, Y.B. Xu, H.T. Liu, C.G. Li, G.M. Cao, Z.Y. Liu, G.D. Wang, J. Magn. Magn. Mater. 324 (2012) 3328–3333.

    Article  Google Scholar 

  21. P. Zhang, Y.K. Zhang, L.G. Liu, X.J. Ren, Y. Zhang, Y. Fang, Q.X. Yang, Comput. Mater. Sci. 52 (2012) 61–67.

    Article  Google Scholar 

  22. Y. Fang, Z.M. Wang, Q.X. Yang, Y.K. Zhang, L.G. Liu, H.Y. Hu, Y. Zhang, Int. J. Miner. Metall. Mater. 16 (2009) 304–308.

    Article  Google Scholar 

  23. Z.M. Wang, Y. Fang, J.J. Qi, Y. Zhang, Y. Yu, J.C. Wu, J. Univ. Sci. Technol. Beijing 14 (2007) 420–424.

    Article  Google Scholar 

  24. H.T. Liu, Z.Y. Liu, Y.Q. Qiu, G.M. Cao, C.G. Li, G.D. Wang, Mater. Charact. 60 (2009) 79–82.

    Article  Google Scholar 

  25. J.P. Birat, C. Marchionni, Rev. Met. Paris 102 (2005) 732–737.

    Article  Google Scholar 

  26. W. Blejde, F. Fisher, M. Schueren, G. Mcquillis, in: Proceedings of the 10th International Conference on Steel Rolling, The Chinese Society for Metals, Beijing, China, 2010, pp. 130–135.

  27. N. Zapuskalov, ISIJ Int. 43 (2003) 1115–1127.

    Article  Google Scholar 

  28. E.E.M. Luiten, K. Blok, Energy Policy 31 (2003) 1339–1356.

    Article  Google Scholar 

  29. S. Ge, M. Isac, R.I.L. Guthrie, ISIJ Int. 52 (2012) 2109–2122.

    Article  Google Scholar 

  30. S. Ge, M. Isac, R.I.L. Guthrie, ISIJ Int. 53 (2013) 729–742.

    Article  Google Scholar 

  31. K. Shibuya, M. Ozawa, ISIJ Int. 31 (1991) 661–668.

    Article  Google Scholar 

  32. J.D. Hwang, H.J. Lin J.S.C. Jang, W.S. Hwang, C.T. Hu, ISIJ Int. 36 (1996) 690–699.

  33. H. Yasunaka, K. Taniguchi, M. Kokita, T. Inoue, ISIJ Int. 35 (1995) 784–789.

    Article  Google Scholar 

  34. D.K. Choo, H.K. Moon, T. Kang, S. Lee, Metall. Mater. Trans. A 32 (2001) 2249–2258.

    Article  Google Scholar 

  35. Y. Wang, Y.B. Xu, Y.X. Zhang, F. Fang, X. Lu, H.T. Liu, G.D. Wang, J. Magn. Magn. Mater. 379 (2015) 161–166.

    Article  Google Scholar 

  36. Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, E.V. Pereloma, Mater. Sci. Eng. A 651 (2016) 291–305.

    Article  Google Scholar 

  37. C.A. Muojekwu, I.V. Samarasekera, J.K. Brimacombe, Metall. Mater. Trans. B 26 (1995) 361–382.

    Article  Google Scholar 

  38. H. Xu, W.L. Wang, C. Lu, P.S. Lv, C.Y. Zhu, J. Mater. Res. Technol. 15 (2021) 524–530.

    Article  Google Scholar 

  39. P. Mehraram, Measuring heat transfer during twin roll casting of metals, Waterloo University, Ontario, Canada, 2011.

    Google Scholar 

  40. C.A. Santos, J.A. Spim Jr., A. Garcia, J. Mater. Process. Technol. 102 (2000) 33–39.

    Article  Google Scholar 

  41. W.S. Kim, D.S. Kim, A.V. Kuznetsov, Int. J. Heat Mass Transfer 43 (2000) 3811–3822.

    Article  Google Scholar 

  42. Y.C. Miao, X.M. Zhang, H.S. Di, G.D. Wang, J. Mater. Process. Technol. 174 (2006) 7–13.

    Article  Google Scholar 

  43. Y.C. Miao, H.S. Di, X.M. Zhang, G.D. Wang, X.H. Liu, Acta Metall. Sin. 36 (2000) 1109–1112.

    Google Scholar 

  44. X.M. Zhang, Z.Y. Jiang, L.M. Yang, X.H. Liu, G.D. Wang, A.K. Tieu, J. Mater. Process. Technol. 187–188 (2007) 339–343.

    Article  Google Scholar 

  45. L.L. Liu, B. Liao, J. Guo, L.G. Liu, H.Y. Hu, Y. Zhang, Q.X. Yang, J. Mater. Eng. Perform. 23 (2014) 39–48.

    Article  Google Scholar 

  46. P.S. Vishweshwara, N. Gnanasekaran, M. Arun, J. Heat Transfer 142 (2020) 012403.

  47. P.S. Vishweshwara, N. Gnanasekaran, M. Arun, Sādhanā 44 (2019) 100.

    Article  Google Scholar 

  48. P.S. Vishweshwara, N. Gnanasekaran, M. Arun, in: J. Bansal, K. Das, A. Nagar, K. Deep, A. Ojha (Eds.), Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing, vol. 816, Springer, Singapore, 2018, pp. 447–459.

    Chapter  Google Scholar 

  49. R.P. Tavares, M. Isac, F.G. Hamel, R.I.L. Gurthrie, Metall. Mater. Trans. B 32 (2001) 55–67.

    Article  Google Scholar 

  50. H.Z. Zhang, C. Zhou, C.X. Wei, ISIJ Int. 57 (2017) 1811–1820.

    Article  Google Scholar 

  51. H. Todoroki, R. Lertarom, A.W. Cramb, I. Jimbo, T. Suzuki, in: 54th Electric Furnace Conference Proceedings, ISS, Dallas, USA, 1996, pp. 585–590.

  52. H. Todoroki, R. Lertarom, T. Suzuki, A.W. Cramb, in: Proceedings of the Alex Mclean Symposium, ISS, Toronto, Canada, 1998, pp. 155–175.

  53. H. Todoroki, R. Lertarom, T. Suzuki, A.W. Cramb, in: 80th Steelmaking Conference, ISS, Chicago, USA, 1997, pp. 667–678.

  54. N. Phinichka, The effect of surface tension, superheat and surface films on the rate of heat transfer from an iron droplet to a water cooled copper mold, Carnegie Mellon University, Pittsburgh, USA, 2001.

    Google Scholar 

  55. P. Nolli, A.W. Cramb, ISIJ Int. 47 (2007) 1284–1293.

    Article  Google Scholar 

  56. W.L. Wang, C.Y. Zhu, C. Lu, J. Yu, L.J. Zhou, Metall. Mater. Trans. A 49 (2018) 5524–5534.

    Article  Google Scholar 

  57. C.Y. Zhu, W.L. Wang, C. Lu, J. Alloy. Compd. 770 (2019) 631–639.

    Article  Google Scholar 

  58. C. Lu, W.L. Wang, J. Zeng, C.Y. Zhu, J. Chang, Metall. Mater. Trans. B 50 (2019) 77–85.

    Article  Google Scholar 

  59. W.L. Wang, C.Y. Zhu, J. Zeng, C. Lu, P.S. Lyu, H.R. Qian, H. Xu, Metall. Mater. Trans. B 51 (2020) 45–53.

    Article  Google Scholar 

  60. L. Strezov, J. Herbertson, G.R. Belton, Metall. Mater. Trans. B 31 (2000) 1023–1030.

    Article  Google Scholar 

  61. L. Strezov, J. Herbertson, ISIJ Int. 38 (1998) 959–966.

    Article  Google Scholar 

  62. W. Zhang, Y. Yu, Y. Fang, J.G. Li, J. Shanghai Jiaotong Univ. (Sci.) 16 (2011) 65–70.

    Article  Google Scholar 

  63. P.S. Lyu, W.L. Wang, H.R. Qian, J.C. Wu, Y. Fang, JOM 72 (2020) 1910–1919.

    Article  Google Scholar 

  64. P. Nolli, A.W. Cramb, Iron Steel Technol. 3 (2006) 169–178.

    Google Scholar 

  65. P. Nolli, A.W. Cramb, Metall. Mater. Trans. B 39 (2008) 56–65.

    Article  Google Scholar 

  66. M. Ha, J. Choi, S. Jeong, H. Moon, S. Lee, T. Kang, Metall. Mater. Trans. A 33 (2002) 1487–1497.

    Article  Google Scholar 

  67. M.B. Yang, X.P. Liang, F.S. Pan, P.D. Ding, Foundry 51 (2002) 772–774.

    Google Scholar 

  68. C.Y. Zhu, W.L. Wang, J. Zeng, C. Lu, L.J. Zhou, J. Chang, ISIJ Int. 59 (2019) 880–888.

    Article  Google Scholar 

  69. Y. Yu, A.W. Cramb, R. Heard, Y. Fang, J. Cui, ISIJ Int. 46 (2006) 1427–1431.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from Hunan Scientific Technology Projects (Grant Nos. 2020WK2003 and 2019RS3007) and National Natural Science Foundation of China (Grant Nos. 52130408 and U1760202) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-jun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Wl., Lu, C., Zhou, Lj. et al. Research methods and influencing factors of interfacial heat transfer during sub-rapid solidification process of strip casting. J. Iron Steel Res. Int. 29, 3–16 (2022). https://doi.org/10.1007/s42243-021-00724-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00724-w

Keywords

Navigation