Skip to main content
Log in

“Power curve” key factor affecting metallurgical effects of an induction heating tundish

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The key to acquire good metallurgical effects with induction heating tundish is to understand the flow field, temperature field and the movement of inclusions in the tundish with different induction heating power curves. Based on the production of a factory, this work established a multi-field coupling mathematical model to find out the link between the heating power curve and the metallurgical effects of the tundish. The results indicated that the heating efficiency of an induction heating tundish not only was affected by the heating power, but also related to the flow and temperature field in the tundish. When the induction heater was used intermittently and the induction heater was turned on, the molten steel was controlled by electromagnetic force, and the flow field basically remained stable. However, when the induction heater was turned off, the velocity of molten steel got small, and the thermal buoyancy could greatly change the flow, forming short-circuit flow; besides, large number of inclusions suddenly escaped from the outlet of the tundish. When the molten steel was heated continuously, the flow field, temperature field and inclusions behavior remained basically unchanged. Considering both energy saving and maintaining good metallurgical effects, continuous heating (the power increasing stepwise over time) should be selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. B. Fredrikson, S. Hellsing, K. Folgero, Channel-type induction furnace, US, 3618917, 1971.

  2. Y. Yoshii, Y. Habu, H. Yamanaka, T. Ueda, Method of heating a molten steel in a tundish for a continuous casting apparatus, US, 4582531, 1984.

  3. P. Marty, A. Alemany, Metallurgical Applications of Magnetohydrodynamics, Proceedings of a symposium of the international and Applied Mechanics (IUTAM), Cambridge, London, UK, 1982, pp. 245–259.

  4. C. Vives, R. Ricou, Metall. Trans. B 22 (1991) 193–209.

    Article  Google Scholar 

  5. L.C. Zhong, D. Shi, H. Wang, B.Y. Chen, C.R. Wang, Y.X. Zhu, J. Iron Steel Res. Int. 17 (2010) No. S2, 67–72.

    Google Scholar 

  6. B.G. Thomas, Steel Res. Int. 89 (2018) 1700312.

    Article  Google Scholar 

  7. C. Yao, M. Wang, M.X. Pan, Y.P. Bao, J. Iron Steel Res. Int. 28 (2021) 1114–1124.

    Article  Google Scholar 

  8. B.G. Thomas, Voest Alpine Conference on Continuous Casting, Urbana, USA, 2000, pp. 1–10.

  9. L.C. Zhong, R.C. Hao, J.Z. Li, Y.X. Zhu, J. Iron Steel Res. Int. 21 (2014) No. S1, 10–16.

    Article  Google Scholar 

  10. J.B. Xie, J.A. Zhou, L.H. Zhou, B. Wang, H. Zhang, J. Iron Steel Res. Int. 24 (2017) 501–507.

    Article  Google Scholar 

  11. X.F. Qin, C.G. Cheng, Y. Li, W.L. Wu, Y. Jin, J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-021-00648-5.

    Article  Google Scholar 

  12. L.F. Zhang, Steel Res. Int. 76 (2005) 784–796.

    Article  Google Scholar 

  13. Q.F. Hou, Z.S. Zou, ISIJ Int. 45 (2005) 325–330.

    Article  Google Scholar 

  14. A. Rueckert, M. Warzecha, R. Koitzsch, M. Pawlik, H. Pfeifer, Steel Res. Int. 80 (2009) 568–574.

    Google Scholar 

  15. F. Wang, B.K. Li, F. Tsukihashi, ISIJ Int. 47 (2007) 568–573.

    Article  Google Scholar 

  16. B. Yang, A.Y. Deng, Y. Li, X.J. Xu, E.G. Wang, J. Iron Steel Res. Int. 26 (2019) 219–229.

    Article  Google Scholar 

  17. Y. Li, A.Y. Deng, H. Li, B. Yang, E.G. Wang, Metals 8 (2018) 76.

    Article  Google Scholar 

  18. Y. Li, A.Y. Deng, C.Q. Yin, S.J. Zhang, E.G. Wang, J. Iron Steel Res. Int. 23 (2016) 1134–1141.

    Article  Google Scholar 

  19. B. Yang, H. Lei, Q. Bi, Y.Y. Xiao, Y. Zhao, JOM 70 (2018) 2950–2957.

    Article  Google Scholar 

  20. Q. Wang, F.S. Qi, B.K. Li, F. Tsukihashi, ISIJ Int. 54 (2014) 2796–2805.

    Article  Google Scholar 

  21. Q. Wang, B.K. Li, F. Tsukihashi, ISIJ Int. 54 (2014) 311–320.

    Article  Google Scholar 

  22. Q. Wang, Y.M. Shi, Y.M. Li, B.K. Li, J. Northeastern Univ. 35 (2014) 1442–1446.

    Google Scholar 

  23. Q. Yue, C.B. Zhang, X.H. Pei, Ironmak. Steelmak. 44 (2017) 227–236.

    Article  Google Scholar 

  24. B. Yang, H. Lei, Q. Bi, J.M. Jiang, H.W. Zhang, Y. Zhao, J.A. Zhou, Steel Res. Int. 89 (2018) 1800145.

    Article  Google Scholar 

  25. H. Lei, B. Yang, Q. Bi, Y.Y. Xiao, S.F. Chen, C.Y. Ding, ISIJ Int. 59 (2019) 1811–1819.

    Article  Google Scholar 

  26. F. Xing, S.G. Zheng, Z.H. Liu, M.Y. Zhu, Metals 9 (2019) 561.

    Article  Google Scholar 

  27. F. Xing, S.G. Zheng, M.Y. Zhu, Steel Res. Int. 89 (2018) 1700542.

    Article  Google Scholar 

  28. P. Wang, X.Q. Chen, H. Xiao, X.S. Li, Z.M. Ma, H.Y. Tang, J.Q. Zhang, Ironmak. Steelmak. (2021) https://doi.org/10.1080/03019233.2021.1948315.

    Article  Google Scholar 

  29. P. Wang, H. Xiao, X.Q. Chen, X.S. Li, H. He, H.Y. Tang, J.Q. Zhang, Metall. Mater. Trans. B. 52 (2021) 3447–3467.

    Article  Google Scholar 

  30. H.Y. Tang, X.S. Li, S. Zhang, J.Q. Zhang, Acta Metall. Sin. 56 (2020) 1629–1642.

    Google Scholar 

  31. S. Zhang, H.Y. Tang, J.W Liu, H. Xiao, H.Y. Yao, J.Q. Zhang, J. Iron Steel Res. 31 (2019) 787–794.

    Google Scholar 

  32. Y.F. Cai, Y.H. Sun, W.Z. Yang, J.Q. Yang, J.Q. Li, T.M. Chen, Z.Q. Li, Steelmaking 36 (2020) No. 2, 42–47.

    Google Scholar 

  33. B. Yang, A.Y. Deng. E.G. Wang, IOP Conf. Ser. Mater. Sci. Eng. 424 (2018) 012060.

    Article  Google Scholar 

  34. B.E. Launder, D.B. Spalding, Lectures in mathematical models of turbulence, Academic Press, London, UK, 1972.

    MATH  Google Scholar 

  35. V. Yakhot, S.A. Orszag, J. Sci. Comput. 1 (1986) 3–51.

    Article  MathSciNet  Google Scholar 

  36. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, Comput. Fluids 24 (1994) 227–238.

    Article  Google Scholar 

  37. A.D. Gosman, E. Ioannides, J. Energy 7 (1981) 482.

    Article  Google Scholar 

  38. C.S. Wang, Flow behavior and structure optimization of a single strand channel type induction heating tundish, University of Science and Technology Liaoning, Anshan, China, 2015.

    Google Scholar 

  39. M. Wang, Study on improvement of thermal properties of ladle with new refractory materials, Northeastern University, Shenyang, China, 2016.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51474065 and 51574083) and the 111 Project (2.0) of China (No. BP0719037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-yuan Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Deng, Ay., Duan, Pf. et al. “Power curve” key factor affecting metallurgical effects of an induction heating tundish. J. Iron Steel Res. Int. 29, 151–164 (2022). https://doi.org/10.1007/s42243-021-00718-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00718-8

Keywords

Navigation