Skip to main content
Log in

Influence of Dual-Channel Induction Heating Coil Parameters on the Magnetic Field and Macroscopic Transport Behavior in T-Type Tundish

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

For the purpose to produce bloom castings by a six-strand T-type tundish with dual-channel induction heating (IH) instrumentation, a three-dimensional electromagnetic-flow-heat transfer and solute transport model was established without changing the body structure for the tundish, and the effect of induction coil parameters on the metallurgical behavior of the tundish was studied. The accuracy of the model was verified by comparing the model predictions with the diffusion of tracer in the isothermal physics experiment. The results show that when the coil was placed vertically inside the channel, the downward eccentricity of the electromagnetic force at the channel exit caused by the skin effect and the proximity effect promoted the downward flow of the heated high-temperature molten steel. However, when the coil was placed horizontally under the channel, the eccentric upward electromagnetic force at the channel exit pushed the liquid steel to flow upward. After heating for the 1800 seconds under 800 kW power, compared with the vertical placement of the coil, the horizontal placement can reduce the dead zone ratio, average residence time standard deviation and maximum temperature difference of each strand by 0.88 pct, 34.5 seconds and 0.73 K, respectively, and under 1000 kW by 1.31 pct, 64.37 seconds and 0.51 K. In general, the horizontal placement of the coil with the power of 1000 kW is not only beneficial to reduce the dead zone ratio and improve the flow consistency of the blooms for better surface quality, but also helpful to compensate the heat loss of the tundish and improve the temperature consistency accordingly. It suggested that reasonable IH coil parameters for realization of low superheat degree casting is beneficial to improve the internal quality of the blooms and the stability of their final products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Q. Wang, Y. Liu, A. Huang, W. Yan, H. Gu, G. Li: Metallurgical and Materials Transactions B, 2020, vol. 51, pp. 276-292.

    Article  Google Scholar 

  2. R.D. Morales, J. Palafox-Ramos, J.J. Barreto: Metallurgical and Materials Transactions B, 2000, vol. 31, pp. 1505-1515.

    Article  CAS  Google Scholar 

  3. S. Joo, J.W. Han, and R.I.L.Guthrie: Metallurgical and Materials Transactions B, 1993, vol. 24, pp. 767-777.

    Article  CAS  Google Scholar 

  4. R. Chen, Y. Yang, X. Gong, J.J. Guo, Y.Q. Su, H.S. Ding, H.Z. Fu: Metallurgical and Materials Transactions B, 2017, vol. 48, pp. 3345-3358.

    Article  Google Scholar 

  5. Y.H. Yang, R. Chen, J.J. Guo, H.S. Ding and Y.Q. Su: International Journal of Heat and Mass Transfer, 2017, vol. 114, pp. 297-306.

    Article  Google Scholar 

  6. P. Bulinski, J. Smolka, S. Golak, R. Przylucki, M. Palacz, G. Siwiec, B. Melka, L. Blacha: International Journal of Heat and Mass Transfer, 2018, vol. 126, pp. 980-992.

    Article  Google Scholar 

  7. I.L. Nikulin, A.V. Perminov: International Journal of Heat and Mass Transfer, 2019, vol. 128, pp. 1026-1032.

    Article  Google Scholar 

  8. Y.H. Yang, R. Chen, J.J. Guo, H.S. Ding and Y.Q. Su: International Journal of Heat and Mass Transfer, 2018, vol. 122, pp. 1128-1137.

    Article  CAS  Google Scholar 

  9. P. Yan, G.F. Zhang, Y.D. Yang and A. Mclean. B: Int. J. Heat Mass Transf. 2020, vol. 163, pp. 120489.

  10. Q. Wang, Y.M. Shi, Y.M. Li and B.K. Li: Journal of Northeastern University, 2014, vol. 35, pp. 1442-1446.

    Google Scholar 

  11. Q.T. Guo, J.Z. Jin and T.J. Li: The Chinese Journal of Nonferrous Metals, 2005, vol. 15, pp. 1112-1117.

    CAS  Google Scholar 

  12. T.C.O.C.W. Ueda, A.C.O.C.W. Ohara, M.C.O.C.W. Sakurai and Y.C.O.C.W. Yoshii: EP19840301814, 1984.

  13. W. Gong, Z.H. Jiang, D.P. Zhan and X.Y. Yang: J. Iron Steel Res. (International), 2012.

  14. F. Xing, S. Zheng, Z. Liu and M. Zhu: Metals, 2019, vol. 9, pp. 561.

    Article  CAS  Google Scholar 

  15. H.Y. Tang, L.Z. Guo, G.H. Wu, H. Xiao, H.Y. Yao and J.Q. Zhang: Metals, 2018, vol. 8, pp. 374.

    Article  Google Scholar 

  16. Y. Yoshii, T. Nozaki, Y. Habu, T. Ueda and M. Sakurai: Tetsu-to-Hagane, 2009, vol. 71, pp. 1474-1481.

    Article  Google Scholar 

  17. C. Vives and R. Ricou: Metallurgical and Materials Transactions B, 1991, vol. 22, pp. 193-209.

    Article  CAS  Google Scholar 

  18. U. Kenji U, T. Yasuji and M. Kazuhisa: The 5th International Symposium on Electromagnetic Processing of Materials : EPM2006 October 23–27, 2006, pp. 485.

  19. M. Mabuchi, Y. Yoshii Y, T. Nozaki, Y. Kakiu, S. Kakihara and N. Ueda: Tetsu- to- Hagane, 1984, vol. 70, pp. 118.

  20. Q. Wang, F. Wang, B. Wang, Z.Q. Liu and B.K. Li: J. Iron Steel Res. (Int.), 2012, vol. 2.

  21. Q. Wang, F.S. Qi, B.K. Li and F. Tsukihashi: Isij International, 2014, vol. 54, pp. 2796-2805.

    Article  CAS  Google Scholar 

  22. Q. Wang, B. Li and F. Tsukihashi: Isij international, 2014, vol. 54, pp. 311-320.

    Article  Google Scholar 

  23. B. Yang, A.Y. Deng and E.G. Wang: IOP Conference Series Materials ence and Engineering, 2018, vol. 424, pp. 012060.

    Article  Google Scholar 

  24. B. Yang, H. Lei, Q. Bi, J.M. Jiang, H.W. Zhang, Y. Zhao and J.A. Zhou: Steel Res. Int., 2018, vol. 89, pp. 1800173.

  25. Q. Yue, B.C. Zhang and H.X. Pei: Ironmaking and Steelmaking, 2017, vol. 44, pp. 227–236.

    Article  CAS  Google Scholar 

  26. W. Dou, C. Zhang, Q. Yue and H. Xiao.: Metalurgija, 2019, vol. 59, pp. 125–28.

  27. H. Lei, B. Yang, Q. Bl, Y. Xiao, S. Chen and C. Ding: ISIJ International, 2019, vol. 59, pp. 1811-1819.

    Article  CAS  Google Scholar 

  28. P. Davidson and J. Hunt: Journal of Fluid Mechanics, 1987, vol. 185, pp. 67-106.

    Article  CAS  Google Scholar 

  29. P.A. Davidson: Annual Review of Fluid Mechanics, 1999, vol. 31, pp. 273-300.

    Article  Google Scholar 

  30. T. OKURA, I. AHMAD, M. KANO, S. HASEBE, H. KITADA and N. MURATA: Isij International, 2013, vol. 53, pp. 76-80.

    Article  CAS  Google Scholar 

  31. B. Moreau: Magnetohydrodynamics. Kluwer Academic Publishers, 1990.

  32. F. Felten, Y. Fautrelle, Y.D. Terrail and O. Metais: Applied Mathematical Modelling, 2004, vol. 28, pp. 15-27.

    Article  Google Scholar 

  33. B.E. Launder and D.B. Spalding: Computer Methods in Applied Mechanics and Engineering, 1974, vol. 3, pp. 269.

    Article  Google Scholar 

  34. C.M. Hrenya, E.J. Bolio, D. Chakrabarti and J.L. Sinclair: Chemical Engineering ence, 1995, vol. 50, pp. 1923-1941.

    Article  CAS  Google Scholar 

  35. M.R. Aboutalebi, M. Hasan and R.I.L. Guthrie: Metallurgical and Materials Transactions B, 1995, vol. 26, pp. 731-744.

    Article  CAS  Google Scholar 

  36. K.Y.M. Lai, M. Salcudean, S. Tanaka and R.I.L. Guthrie: Metallurgical and Materials Transactions B, 1986, vol. 17, pp. 449-459.

    Article  Google Scholar 

  37. S. Chakraborty and Y. Sahai: IISC. The Sixth International Iron and Steel Congress, 1990, vol. 3, pp. 189–96.

  38. S. Zhang, H.Y. Tang, J.W. Liu, H. Xiao, H.Y. Yao and J.Q. Zhang: Journal of Iron and Steel Research, 2019, vol. 31, pp. 787-794.

    Google Scholar 

  39. P. Wang, S.X. Li, P. Lan, Z.P. Tie, and J. Zhang: AISTech, 2019.

  40. P. Wang, Z. Zhang, Z.P. Tie, M. Qi, P. Lan, S.X. Li, Z.B. Yang and J.Q. Zhang: Metals, 2019, vol. 9, pp. 1083.

    Article  CAS  Google Scholar 

  41. P. Wang, S.X. Li, Z. Zhang, Z.P. Tie and Y.N. Dong: Journal of Mechanical Engineering, 2020, vol. 56, pp. 99-106.

    Google Scholar 

  42. E.F. Northrup: Journal of the Franklin Institute, 1914, vol. 177, pp. 125-158.

    Article  CAS  Google Scholar 

  43. K. LažetićKasaš, M. Prša and N. Đurić: Facta universitatis. Series: Electronics and Energetics, 2009, vol. 22, pp. 293-303.

    Google Scholar 

  44. B. Yang, H. Lei, Q. Bi, J. Jiang and J. Zhou: Steel Research International, 2018, vol. 89, pp. 1800145.

    Article  Google Scholar 

  45. J.C. Maxwell, Electricity and magnetism. Dover: New York (1954).

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Beijing Municipal Natural Science Foundation (BJNSF) (Grant No. 2182038) and the National Natural Science Foundation of China (NSFC) (Grant Nos. 51874033 and U1860111).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, PW and HX; methodology, PW and XC; investigation, XL and HH; resources, HT and JZ; writing—original draft preparation, PW, HX and XC; writing—review and editing, PW, HT and JZ; visualization, XC and PW; supervision, HX, HT and JZ; project administration, HT and JZ.

Corresponding authors

Correspondence to Hai-yan Tang or Jia-quan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 25, 2020; accepted June 28, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Xiao, H., Chen, Xq. et al. Influence of Dual-Channel Induction Heating Coil Parameters on the Magnetic Field and Macroscopic Transport Behavior in T-Type Tundish. Metall Mater Trans B 52, 3447–3467 (2021). https://doi.org/10.1007/s11663-021-02274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02274-8

Navigation