Skip to main content
Log in

Leaching behavior and mineralogical evolution of vanadium released from sodium roasted-acid leaching tailing of vanadium slag

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The sodium roasted-acid leaching tailing (SRALT) of vanadium slag with a certain amount of vanadium exhibits potential environmental risk. To investigate the leaching behavior of vanadium from the SRALT, neutral batch leaching tests were performed. The evolution of vanadium concentration, pH, redox potential (Eh), dissolved oxygen, and conductivity as a function of time was measured. Pourbaix diagrams of V–H2O system with different vanadium concentrations were obtained to identify the ionic speciation of vanadium in leachate. X-ray diffraction, X-ray photoelectron spectroscopy, field emission-scanning electron microscopy, and thermogravimetry–differential scanning calorimetry analysis were conducted to investigate the mineralogical evolution of the SRALT during the leaching process. It was found that the major minerals of the original SRALT are titanomagnetite, spinel, olivine, and augite. The valence states of V existing in the original SRALT are V3+ and V5+. The pH and Eh values of the obtained leachates are 10.00–10.58 and (−43)–(+67) mV, respectively. In this pH and Eh region, the released vanadium is mainly present as HVO42−. The FeOOH and CaCO3 would form during the leaching process. The HVO42− would be mainly adsorbed by the FeOOH and slightly incorporated into the CaCO3, resulting in the decline in the vanadium concentration. The vanadium concentration above 27 mg L−1 and the dissolved oxygen value below 5.0 mg L−1 can be obtained after a short leaching period. As a V(V)-releasing and oxygen-depleting substance, the leaching toxicity of the SRALT should not be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.H. Wang, S.L. Zheng, S.N. Wang, Y.L. Qin, H. Du, Y. Zhang, Hydrometallurgy 151 (2015) 51–55.

    Article  Google Scholar 

  2. B. Zhang, C.J. Liu, Z.Z. Liu, Z.Q. Li, M.F. Jiang, Process Saf. Environ. Prot. 128 (2019) 362–371.

    Article  Google Scholar 

  3. S.Y. Liu, S.J. Li, S. Wu, L.J. Wang, K.C. Chou, J. Hazard. Mater. 354 (2018) 99–106.

    Article  Google Scholar 

  4. J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153 (2018) 193–204.

    Article  Google Scholar 

  5. F.J. Oldenburg, E. Nilsson, T.J. Schmidt, L. Gubler, ChemSusChem 12 (2019) 2489.

    Article  Google Scholar 

  6. X. Yi, H. Wang, B. Sun, K. Sun, C. Huang, Z. Gao, X. Meng, W. Cai, L. Zhao, J. Alloy. Compd. 835 (2020) 155416.

  7. K. Li, Q. Jiang, L. Gao, J. Chen, J. Peng, S. Koppala, M. Omran, G. Chen, J. Hazard. Mater. 395 (2020) 122698.

  8. R. Deng, Z. Xie, Z. Liu, L. Deng, C. Tao, Hydrometallurgy 189 (2019) 105110.

  9. Z. Yang, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, B. Xie, Int. J. Miner. Process. 133 (2014) 105–111.

    Article  Google Scholar 

  10. D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang, L.N. Wang, J. Hazard. Mater. 244–245 (2013) 588–595.

    Article  Google Scholar 

  11. M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi, E. Vahidi, Hydrometallurgy 102 (2010) 14–21.

    Article  Google Scholar 

  12. J. Xiang, Q. Huang, X. Lv, C. Bai, J. Clean. Prod. 170 (2018) 1089–1101.

    Article  Google Scholar 

  13. H. Peng, Z. Liu, C. Tao, J. Environ. Chem. Eng. 3 (2015) 1252–1257.

    Article  Google Scholar 

  14. Z. Wang, L. Chen, T. Aldahrib, C. Li, W. Liu, G. Zhang, Y. Yang, D. Luo, Hydrometallurgy 191 (2020) 105156.

  15. U. Schwertmann, G. Pfab, Geochim. Cosmochim. Acta 58 (1994) 4349–4352.

    Article  Google Scholar 

  16. Y. Zhang, T.A. Zhang, D. Dreisinger, C. Lv, G. Lv, W. Zhang, J. Hazard. Mater. 369 (2019) 632–641.

    Article  Google Scholar 

  17. M. Almeida, S. Filipe, M. Humanes, M.F. Maia, R. Melo, N. Severino, J.A.L. da Silva, J.J.R. Fraústo da Silva, R. Wever, Phytochemistry 57 (2001) 633–642.

    Article  Google Scholar 

  18. B. Gummow, Encyclopedia of environmental health, Elsevier, Townsville, 2011.

    Google Scholar 

  19. M. Imtiaz, M. Ashraf, M.S. Rizwan, M.A. Nawaz, M. Rizwan, S. Mehmood, B. Yousaf, Y. Yuan, A. Ditta, M.A. Mumtaz, M. Ali, S. Mahmood, S. Tu, Ecotoxicol. Environ. Saf. 158 (2018) 139–144.

    Article  Google Scholar 

  20. L. Hao, B. Zhang, C. Feng, Z. Zhang, Z. Lei, K. Shimizu, Chemosphere 263 (2021) 128246.

  21. J. Yang, M. Wang, Y. Jia. M. Gou, J. Zeyer, Environ. Pollut. 231 (2017) 48–58.

  22. L. Tian, Z. Xu, L. Chen, Y. Liu, T. Zhang, Hydrometallurgy 184 (2019) 45–54.

    Article  Google Scholar 

  23. H. Li, K. Wang, W. Hua, Z. Yang, W. Zhou, B. Xie, Hydrometallurgy 160 (2016) 18–25.

    Article  Google Scholar 

  24. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R. St.C. Smart, Appl. Surf. Sci. 257 (2010) 887–898.

  25. A.J. Hobson, D.J. Stewart, A.W. Bray, R.J.G. Mortimer, W.M. Mayes, M. Rogerson, I.T. Burke, Environ. Sci. Technol. 51 (2017) 7823–7830.

    Article  Google Scholar 

  26. Z. Liu, Y. Li, M. Chen, A. Nueraihemaiti, J. Du, X. Fan, C. Tao, Hydrometallurgy 159 (2016) 1–5.

    Article  Google Scholar 

  27. L. De Windt, P. Chaurand, J. Rose, Waste Manage. 31 (2011) 225–235.

    Article  Google Scholar 

  28. G.S. Roadcap, W.R. Kelly, C.M. Bethke, Groundwater 43 (2005) 806–816.

    Article  Google Scholar 

  29. C.J. Grant, C.J. McLimans, J. Vis. Exp. 112 (2016) 54430.

    Google Scholar 

  30. W.W. Hoback, D.W. Stanley, J. Insect Physiol. 47 (2001) 533–542.

    Article  Google Scholar 

  31. M.S. Pollock, L.M.J. Clarke, M.G. Dubé, Environ. Rev. 15 (2007) 1–14.

    Article  Google Scholar 

  32. H. Peng, J. Environ. Chem. Eng. 7 (2019) 103313.

  33. B. Wehrli, W. Stumm, Geochim. Cosmochim. Acta 53 (1989) 69–77.

    Article  Google Scholar 

  34. D. Langmuir, Aqueous Environmental Geochemistry, Prentice Hall, New Jersey, USA, 1997.

    Google Scholar 

  35. C.L. Peacock, D.M. Sherman, Geochim. Cosmochim. Acta 68 (2004) 1723–1733.

    Article  Google Scholar 

  36. I.T. Burke, C.L. Peacock, C.L. Lockwood, D.I. Stewart, R.J.G. Mortimer, M.B. Ward, P. Renforth, K. Gruiz, W.M. Mayes, Environ. Sci. Technol. 47 (2013) 6527–6535.

    Article  Google Scholar 

  37. A.A. Boylan, D.I. Stewart, J.T. Graham, D. Trivedi, I.T. Burke, Appl. Geochem. 85 (2017) 137–147.

    Article  Google Scholar 

  38. Z.G. Zhao, X.L. Qu, J.H. Li, Cement Concr. Compos. 114 (2020) 103739.

  39. Y.Q. Wei, W. Yao, X.M. Xing, M.J. Wu, Constr. Build. Mater. 36 (2012) 925–932.

    Article  Google Scholar 

  40. P.S.R. Prasad, K.S. Prasad, V.K. Chaitanya, E.V.S.S.K. Babu, B. Sreedhar, S.R. Murthy, J. Asian Earth Sci. 27 (2006) 503–511.

  41. L. Paama, I. Pitkänen, H. Rönkkömäki, P. Perämäki, Thermochim. Acta 320 (1998) 127–133.

    Article  Google Scholar 

  42. J.W. Zhang, Z.J. Wang, R. Chen, F.X. Chen, Powder Technol. 373 (2020) 39–45.

    Article  Google Scholar 

  43. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257 (2011) 2717–2730.

    Article  Google Scholar 

  44. Q. Li, R. Li, X.Y. Ma, B. Sarkar, X.Y. Sun, N. Bolan, Environ. Pollut. 267 (2020) 115658.

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hebei Province (Nos. E2020209195, E2021209043, and E2020209043), National Natural Science Foundation of China (No. 51574108), Tangshan Municipal Project of Science and Technology (No. 19150201E), and Science and Technology Project of Hebei Education Department (Nos. BJ2020022 and BJ2021034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-nan Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Li, J., Ren, Qq. et al. Leaching behavior and mineralogical evolution of vanadium released from sodium roasted-acid leaching tailing of vanadium slag. J. Iron Steel Res. Int. 29, 772–782 (2022). https://doi.org/10.1007/s42243-021-00716-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00716-w

Keywords

Navigation