Skip to main content

Advertisement

Log in

Effect of volume fraction of metal matrix composites framework on compressive mechanical properties of 3D interpenetrating ZTAp/40Cr architectured composites

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of the volume fraction of 3D-metal matrix composites (MMC) framework on the compressive properties of 3D interpenetrating hierarchical ZrO2-toughened Al2O3 particle (ZTAp)/40Cr steel composites was investigated. The results showed that the compressive properties of the material tended to decrease as the volume fraction of 3D-MMC framework increased. The composite with 35 vol.% 3D-MMC had a yield strength of 1455.2 MPa and compressive strength of 1612.8 MPa, which occurred at a strain value of 5.6%. Compared to the homogeneously dispersed composite material, the composite with 35 vol.% 3D-MMC had a 144.7% higher yield strength, which occurred at a 20% higher strain. An analysis of the cracks inside the material revealed that the crack was hindered and deflected by the matrix during propagation, which lengthened the crack propagation path and consumed more energy, thus leading to toughening. The results indicated that 3D interpenetrating hierarchical structure had a strengthening and toughening effect on ZTAp/40Cr composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Bi, Z.C. Li, H.X. Sun, B.Y Song, Z.Y. Liu, B.L. Xiao, Z.Y. Ma, Acta Metall. Sin. 57 (2021) 71–81.

  2. S.L.Chen, Z.X. Cao, C. Wang, C.X. Huang, D. Ponge, W.Q. Cao, J. Iron Steel Res. Int. 26 (2019) 1209–1218.

    Article  Google Scholar 

  3. L.J. Yang, S.P. Wang, P. Wang, H. Li, H.Y. Yang, Y.S. Ye, Z.X. Li, J. Iron Steel Res. Int. 27 (2020) 228–237.

    Article  Google Scholar 

  4. A. Miserez, A. Rossoll, A. Mortensen, Acta Mater. 52 (2004) 1337–1351.

    Article  Google Scholar 

  5. A. Canakci, S. Ozsahin, T. Varol, Arab. J. Sci. Eng. 39 (2014) 6351–6361.

    Article  Google Scholar 

  6. F. Cioffi, R. Fernández, D. Gesto, P. Rey, D. Verdera, G. Gonzalez-Doncel, Compos. Part A Appl. Sci. Manufact. 54 (2013) 117–123.

    Article  Google Scholar 

  7. Z. Dong, W.Q. Hu, Z.Q. Ma, C. Li, Y.C. Liu, Mater. Chem. Front. 3 (2019) 1952–1972.

    Article  Google Scholar 

  8. A.A. Cerit, M.B. Karamis, F. Nair, K. Yildizli, J. Balk Tribol Assoc. 12 (2008) 482–489.

    Google Scholar 

  9. E. Pagounis, V.K. Lindroos, M. Talvitie, Metall. Mater. Trans. A 27 (1996) 4171–4181.

    Article  Google Scholar 

  10. V. Kevorkijan, S. Davor Škapin, Mater. Manuf. Process. 24 (2009) 1337–1340.

  11. H.T. Tsang, C.G. Chao, C.Y. Ma, Scripta Mater. 37 (1997) 1359–1365.

    Article  Google Scholar 

  12. C.M. Friend, Mater. Sci. Technol. 5 (1989) No. 1, 1–7.

    Article  Google Scholar 

  13. K. Lemster, A. Delporte, T. Graule, J. Kuebler, Ceram. Int. 33 (2007) 1179–1185.

    Article  Google Scholar 

  14. DW Abueidda, RK Abu Al-Rub, AS Dalaq, HA Younes, A.A. Al Ghaferi, T.K. Shah, Compos. Sci. Technol. 118 (2015) 127–134.

  15. M.J. Zhou, Y.D. Sui, X.Y. Chong, Y.H. Jiang, Metals 8 (2018) 588.

    Article  Google Scholar 

  16. M. Ashby, Scripta Mater. 68 (2013) 4–7.

    Article  Google Scholar 

  17. H. Xie, Y.X. Jin, M.Y. Niu, J.H. Wang, J. Iron Steel Res. Int. 27 (2020) 1117–1126.

    Article  Google Scholar 

  18. L. Zhang, W. Wang, M.B. Shahzad, Y.Y. Shan, K. Yang, J. Iron Steel Res. Int. 27 (2020) 433–439.

    Article  Google Scholar 

  19. S.L. Tang, Y.M. Gao, Y.F. Li, Ironmak. Steelmak. 41 (2014) 633–640.

    Article  Google Scholar 

  20. C. Liu, S.Y. Qin, G.D. Zhang, M. Naka, Mater. Sci. Eng. A 332 (2002) 203–209.

    Article  Google Scholar 

  21. H. Prielipp, M. Knechtel, N. Claussen, S.K. Streiffer, H. Müllejans, M. Rühle, J. Rödel, Mater. Sci. Eng. A 197 (1995) 19–30.

    Article  Google Scholar 

  22. H.X. Peng, Z. Fan, J.R.G. Evans, Mater. Sci. Technol. 16 (2000) 903–907.

  23. C.S. Marchi, M. Kouzeli, R. Rao, J.A. Lewis, D.C. Dunand, Scripta Mater. 49 (2003) 861–866.

    Article  Google Scholar 

  24. M.M. Bai, W.X. Li, Y.H. Li, W. Zhao, P.G. Rao, Journal of Inorganic Material 29 (2014) 1339–1344.

    Article  Google Scholar 

  25. D.H. Lu, G.Y. He, L.K. Wang, C. Liao, Mater. Sci. Technol. 35 (2019) 716–724.

    Article  Google Scholar 

  26. M.Y. Li, D.H. Lu, L.K Wang, B. Ren, G.Y. He, C.L. Xu, Mater. Res. Express 6 (2019) 1265a1.

    Article  Google Scholar 

  27. X.Y. Liu, B. Zou, H.Y. Xing, C.Z. Huang, Ceram. Int. 46 (2020) 937–944.

    Article  Google Scholar 

  28. C. Quan, B. Han, Z.H. Hou, Q. Zhang, X.Y. Tian, T.J. Lu, Compos. Part B Eng. 187 (2020) 107858.

    Article  Google Scholar 

  29. E. Schlenther, H. Oezcoban, H. Jelitto, M. Faller, G.A. Schneider, T. Graule, C.G. Aneziris, J. Kuebler, Mater. Sci. Eng. A 590 (2014) 132–139.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51461025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-hong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Wh., Lu, Dh., He, Gy. et al. Effect of volume fraction of metal matrix composites framework on compressive mechanical properties of 3D interpenetrating ZTAp/40Cr architectured composites. J. Iron Steel Res. Int. 29, 859–865 (2022). https://doi.org/10.1007/s42243-021-00670-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00670-7

Keywords

Navigation