Skip to main content
Log in

Mathematical modeling of flow field in slab continuous casting mold considering mold powder and solidified shell with high temperature quantitative measurement

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Optimization of mathematical model of flow field in slab continuous casting mold was performed by means of industrial measurement and mathematical modeling. The rod deflection method was used to quantitatively measure the velocities near the mold surface at high temperature. The measurement results were compared with the simulation results of three mathematical models at different argon gas flow rates of 6, 10 and 14 L min−1. The model 1 neglects the mold powder layer, thermal effect and solidified shell. The model 2 only considers the influence of mold powder layer. The model 3 considers the influence of mold powder layer, thermal effect and solidified shell on the flow field. In all three models, the diameter of argon bubbles obeys Rosin–Rammler distribution fitted according to the experimental data of others’ previous work. With increasing the argon gas flow rate, the velocity of liquid steel near the mold surface decreases. The model 1 seriously underestimates the shear stress of liquid steel near the mold surface, and its calculation results show higher velocity near the mold surface, lower turbulent kinetic energy and wider distribution of argon gas bubbles in the mold. The simulation results of model 2 only considering the viscous resistance of the mold powder layer to liquid steel makes the velocity near the surface lower than the measurement results obviously. The calculated velocities near the mold surface with model 3 are in best agreement with the measured results, showing the reasonable spatial distribution range of argon bubbles in the mold and the moderate turbulent kinetic energy. In the present conditions, the best argon gas flow rate is 10 L min−1 due to the moderate velocity near the mold surface, the appropriate distribution of argon gas bubbles in the mold and the smallest fluctuation amplitude on the mold surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A mush :

Mushy zone constant

c W :

Specific heat capacity of cooling water, J kg−1 K−1

D :

Width or thickness of mold, mm

d :

Distance to meniscus, m

d b :

Bubble diameter, m

d m :

Effective length of mold, m

F mom :

Momentum exchange caused by interphase force traction, N m−3

F D :

Drag force, N

F f :

Buoyancy, N

F g :

Gravity force, N

F i :

Flow rate of cooling water on a certain face of mold, L min−1

F L :

Lift force, N

F P :

Pressure gradient force, N

F V :

Virtual mass force, N

F vol :

Interface tension volume force, N m−3

g(g i, g j, g k):

Gravity acceleration vector, m s−2

h :

Equivalent heat transfer coefficient between solidified shell and cooling water, kJ m−2 h−1 °C−1

k :

Interface curvature, m−2

m :

Cooling water flow rate of mold, kg s−1

m b :

Bubble mass, kg

M eff :

Effective cooling area of mold, m2

n :

Normal vector of interface, m−1

\(\hat{\varvec{n}}\) :

Unit normal vector of interface, m−1

p :

Pressure, Pa

p 1, p 2 :

Pressure on both sides of two-phase interface, Pa

\(\stackrel{\mathrm{-}}{\text{\it q}}\) :

Average heat flux in mold area, W m−2

q s :

Heat flux between solidified shell and cooling water, W m−2

R 1, R 2 :

Principal radii of curvature at two-phase interface in orthogonal directions, m

S :

Additional momentum source caused by solidification, N m−3

t :

Time, s

T :

Temperature rise of cooling water flowing through mold, K

T :

Temperature, K

T liquidus :

Liquidus temperature, K

T solidus :

Solidus temperature, K

T w :

Cooling water temperature, °C

u(u i, u j, u k):

Velocity of continuous phase, m s−1

u b :

Bubble velocity, m s−1

u i , j :

Velocity perpendicular to i, j plane, m s−1

u p :

Casting speed, m s−1

W :

Cooling intensity, L m−2 s−1

X :

Distance from meniscus to bottom of mold, cm

x(x i, x j, x k):

Location vector, m

α slag :

Volume fraction of liquid mold powder

α steel :

Volume fraction of liquid steel

β :

Liquid fraction of steel

ε :

Turbulent energy dissipation rate, m2 s−3

κ :

Turbulent kinetic energy, m2 s−2

λ 2 :

Secondary dendrite spacing, m

μ l :

Liquid viscosity, Pa s

μ slag :

Viscosity of liquid mold powder, Pa s

μ steel :

Viscosity of liquid steel, Pa s

μ t :

Turbulent viscosity, Pa s

ξ :

Small constant to avoid a zero denominator

ρ :

Density of continuous phase, kg m−3

ρ b :

Bubble density, kg m−3

ρ slag :

Density of liquid mold powder, kg m−3

ρ steel :

Density of liquid steel, kg m−3

σ :

Interface tension coefficient, N m−1

i, j, k :

Indices for different spatial coordinate directions

References

  1. Z.H. Zhang, H.L. Wu, L. Feng, S.F. Liu, Y. Zhang, J. Iron Steel Res. 28 (2016) No. 5, 1–6.

    Article  Google Scholar 

  2. X.P. Yang, G.Q. Li, J.P. Rao, Z.Z. Yang, J. Wuhan Univ. Sci. Technol. 39 (2016) 12–18.

    Google Scholar 

  3. C.N. Wang, L.Y. Wen, D.F. Chen, Z. Peng, J. Zhang, X. Jin, D.J. Zhang, Chin. J. Process Eng. 9 (2009) 325–328.

    Google Scholar 

  4. H.B. Lu, C.G. Cheng, Y. Li, M.L. Yang, Y. Jin, Iron and Steel 53 (2018) No. 4, 27–36.

    Google Scholar 

  5. S.M. Cho, B.G. Thomas, S.H. Kim, Metall. Mater. Trans. B 50 (2019) 52–76.

    Article  Google Scholar 

  6. Y. Meng, B.G. Thomas, ISIJ Int. 46 (2006) 660–669.

    Article  Google Scholar 

  7. A. Vakhrushev, M. Wu, A. Ludwig, G. Nitzl, Y. Tang, G. Hackl, Experimental Verification of a 3-Phase Continuous Casting Simulation Using a Water Model, in: Proceedings of 8th ECCC Conference, Graz, Austria, 2014.

  8. P. Zhao, Q. Li, S.B. Kuang, Z.S. Zou, High Temp. Mater. Proc. 36 (2017) 551–565.

    Article  Google Scholar 

  9. M. Saeedipour, S. Puttinger, S. Pirker, in: Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries, SINTEF Academic Press, Trondheim, Norway, 2017, pp. 507–513.

  10. P. Sulasalmi, A. Kärnä, T. Fabritius, J. Savolainen, ISIJ Int. 49 (2009) 1661–1667.

    Article  Google Scholar 

  11. M. Iguchi, J. Yoshida, T. Shimizu, Y. Mizuno, ISIJ Int. 40 (2000) 685–691.

    Google Scholar 

  12. Y.Z. Luo, L.J. Zhang, H.B. Li, Y. Cui, Y.J. Ni, X.W. Pei, China Metallurgy 26 (2016) No. 11, 34–40.

    Google Scholar 

  13. D.J. Zou, Z.S. Zou, Continuous Casting (2009) No. 6, 5–8+12.

  14. Y. Meng, B.G. Thomas, Metall. Mater. Trans. B 34 (2003) 685–705.

    Article  Google Scholar 

  15. B.G. Thomas, X. Huang, R.C. Sussman, Metall. Mater. Trans. B 25 (1994) 527–547.

    Article  Google Scholar 

  16. J.M. Zhang, L.F. Wang, X.H. Wang, L. Zhang, H.B. Tang, Acta Metall. Sin. 39 (2003) 1281–1284.

    Google Scholar 

  17. C. Zhang, Y.Q. Wang, D.X. Cai, Z.M. Zhu, W.Z. Wang, J. Iron Steel Res. 12 (2000) No. 2, 21–24.

    Google Scholar 

  18. K. Sołek, M. Korolczuk-Hejnak, W. Ślęzak, Arch. Metall. Mater. 57 (2012) 333–338.

    Google Scholar 

  19. K. Sołek, M. Korolczuk-Hejnak, M. Karbowniczek, Arch. Metall. Mater. 56 (2011) 593–598.

    Article  Google Scholar 

  20. X.B. Zhang, W. Chen, L.F. Zhang, China Foundry 14 (2017) 416–420.

    Article  Google Scholar 

  21. S.D. Wang, X.B. Zhang, L.F. Zhang, Q.Q. Wang, Steel Res. Int. 89 (2018) 1800263.

    Article  Google Scholar 

  22. L.F. Zhang, X.B. Zhang, Y. Ren, W. Yang, Metall. Res. Technol. 116 (2019) 215.

    Article  Google Scholar 

  23. B. Rietow, B.G. Thomas, in: AISTech 2008 Steelmaking Conference Proceedings, AIST, Pittsburgh, PA, USA, 2008, pp. 1–11.

    Google Scholar 

  24. L. Ren, L.F. Zhang, Q.Q. Wang, Iron and Steel 51 (2016) No. 2, 49–54.

    Google Scholar 

  25. R. Chaudhary, B.T. Rietow, B.G. Thomas, in: Proceedings of the Materials Science and Technology Conference, Materials Science and Technology, Pennsylvania, USA, 2009, pp. 1090–1101.

  26. T. Zhang, J. Yang, P. Jiang, Metals 9 (2019) 36.

    Article  Google Scholar 

  27. P. Jiang, J. Yang, T. Zhang, G.J. Xu, H.J. Liu, J.J. Zhou, W. Qin, Metals 10 (2020) 9.

    Article  Google Scholar 

  28. T. Zhang, J. Yang, G.J. Xu, H.J. Liu, J.J. Zhou, W. Qin, Int. J. Miner. Metall. Mater. 28 (2021) 238–248.

    Article  Google Scholar 

  29. H.B. Lu, C.G. Cheng, Y. Li, M.L. Yang, Y. Jin, Iron and Steel 53 (2018) No. 4, 27–36+41.

  30. N. Cao, M.Y. Zhu, J.X. Song, X.G. Leng, N.L. Cheng, in: Proceedings of the 8th National Conference on Continuous Casting, The Chinese Society for Metals, Haikou, China, 2007, pp. 248–252.

  31. J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100 (1992) 335–354.

    Article  MathSciNet  Google Scholar 

  32. L.B. Trindade, J.E.A. Nadalon, A.C. Contini, R.C. Barroso, Steel Res. Int. 88 (2017) 1600319.

    Article  Google Scholar 

  33. Q.Q. Wang, Study on the multiphase flow, heat transfer and solidification, motion and entrapment of inclusions during continuous casting, University of Science and Technology Beijing, Beijing, China, 2017.

    Google Scholar 

  34. S.X. Li, X.M. Zhang, L. Li, P. Lan, H.Y. Tang, J.Q. Zhang, Chin. J. Eng. 41 (2019) 199–208.

    Google Scholar 

  35. P.C. Carman, Chem. Eng. Res. Des. 75 (1997) S32–S48.

    Article  Google Scholar 

  36. J. Savage, W.H. Pritchard, J. Iron Steel Inst. 178 (1954) 269–277.

    Google Scholar 

  37. V. Seshadri, C.A. da Silva, I.A. da Silva, Iron and Steel Making 2 (2006) 499–510.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1960202) and HBIS Handan Iron and Steel Group Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yb., Yang, J., Ma, C. et al. Mathematical modeling of flow field in slab continuous casting mold considering mold powder and solidified shell with high temperature quantitative measurement. J. Iron Steel Res. Int. 29, 445–461 (2022). https://doi.org/10.1007/s42243-021-00654-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00654-7

Keywords

Navigation