Skip to main content

Advertisement

Log in

Non-isothermal reduction process analysis of iron-bearing burden with charging iron coke hot briquette under simulated blast furnace conditions

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Highly reactive iron coke hot briquette (ICHB) prepared by carbonizing the agglomerate of iron-bearing substance and blended coals is regarded as an alternative fuel to mitigate carbon emission and energy consumption of blast furnace. Simultaneously, the reduction process of iron-bearing burden is extremely crucial for blast furnace smelting. The effects of ICHB on the non-isothermal reduction process of iron-bearing burden with different reduction properties were thus experimentally studied under the conditions of simulated blast furnace lump zone (below 1100 °C), and the related mechanism was discussed and analyzed. The results showed that the non-isothermal reduction process of iron-bearing burden is promoted by adding ICHB. As the charging ratio of ICHB is increased from 0% to 30%, the reduction degree of pellet is increased from 22.91% to 36.62%, but the increased amplitude is leveled off. Furthermore, the reduction degree of sinter is raised from 35.10% to 93.33%. It is also indicated that the promotion effect of ICHB on the non-isothermal reduction of iron-bearing burden depends on the reduction property of burden. Compared with the burden with poor reduction performance (such as pellet 1), the promotion is more significant for the burden with good reduction property (such as sinter 1) since the reduction reaction of iron oxide in iron-bearing burden and the gasification of carbon in ICHB are remarkably reinforced each other. The practical application of ICHB in blast furnace should be utilized with highly reductive iron-bearing burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.F.C. de Assis, J.A.S. Tenório, P.S. Assis, N.K. Nath, Energy Fuels 28 (2014) 7268–7273.

  2. X. Xing, H. Rogers, G.Q. Zhang, K. Hockings, P. Zulli, A. Deev, J. Mathieson, O. Ostrovski, Fuel Process. Technol. 157 (2017) 42–51.

    Article  Google Scholar 

  3. Z.Y. Chang, P. Wang, J.L. Zhang, K.X. Jiao, Y.Q. Zhang, Z.J. Liu, Int. J. Miner. Metall. Mater. 25 (2018) 1402–1411.

    Article  Google Scholar 

  4. Y.J. Wang, H.B. Zuo, J. Zhao, Ironmak. Steelmak. 47 (2020) 640–649.

    Article  Google Scholar 

  5. C. Zhou, G.W. Tang, J.C. Wang, D. Fu, T. Okosun, A. Silaen, B. Wu, JOM 68 (2016) 1353–1362.

    Article  Google Scholar 

  6. J.A. de Castro, C. Takano, J.I. Yagi, J. Mater. Res. Technol. 6 (2017) 258–270.

    Article  Google Scholar 

  7. M.M. Sun, J.L. Zhang, K.J. Li, K. Guo, Z.M. Wang, C.H. Jiang, Int. J. Miner. Metall. Mater. 26 (2019) 1247–1257.

    Article  Google Scholar 

  8. R.S. Xu, B.W. Dai, W. Wang, J. Schenk, A. Bhattacharyya, Z.L. Xue, Energy Fuels 32 (2018) 1188–1195.

    Article  Google Scholar 

  9. L.R. Lemos, S.H.F.S. da Rocha, L.F.A. de Castro, J. Mater. Res. Technol. 4 (2015) 278–282.

    Article  Google Scholar 

  10. H.B. Zhu, W.L. Zhan, Z.J. He, Y.C. Yu, Q.H. Pang, J.H. Zhang, Int. J. Miner. Metall. Mater. 27 (2020) 1226–1233.

    Article  Google Scholar 

  11. K.J. Li, J.L. Zhang, Z.J. Liu, X.J. Ning, T.Q. Wang, Ind. Eng. Chem. Res. 53 (2014) 5737–5748.

    Article  Google Scholar 

  12. X. Xing, H. Rogers, G.Q. Zhang, K. Hockings, P. Zulli, O. Ostrovski, Energy Fuels 30 (2016) 161–170.

    Article  Google Scholar 

  13. E.A. Mousa, A. Babich, D. Senk, ISIJ Int. 51 (2011) 350–358.

    Article  Google Scholar 

  14. M. Naito, A. Okamoto, K. Yamaguchi, T. Yamaguchi, Y. Inoue, Tetsu-to-Hagané 87 (2001) 357–364.

    Article  Google Scholar 

  15. S. Nomura, H. Ayukawa, H. Kitaguchi, T. Tahara, S. Matsuzaki, M. Naito, S. Koizumi, Y. Ogata, T. Nakayama, T. Abe, ISIJ Int. 45 (2005) 316–324.

    Article  Google Scholar 

  16. S. Nomura, M. Naito, K. Yamaguchi, ISIJ Int. 47 (2007) 831–839.

    Article  Google Scholar 

  17. S. Nomura, K. Higuchi, K. Kunitomo, M. Naito, ISIJ Int. 50 (2010) 1388–1395.

    Article  Google Scholar 

  18. S. Nomura, H. Terashima, E. Sato, M. Naito, ISIJ Int. 47 (2007) 823–830.

    Article  Google Scholar 

  19. E.M.A. Edreis, X. Li, C.F. Xu, H. Yao, J. Mater. Res. Technol. 6 (2017) 147–157.

    Article  Google Scholar 

  20. B.Y. Tuo, J.L. Wang, Y. Yang, G.H. Nie, Mining and Metallurgical Engineering 34 (2014) No. 1, 70–73.

    Google Scholar 

  21. M. Sato, H. Matsuno, K. Ishii, in: Asia Steel International Conference 2015, The Iron and Steel Institute of Japan, Yokohama, Japan, 2015, pp. 12–13.

  22. T. Yamamoto, T. Sato, H. Fujimoto, T. Anyashiki, K. Fukada, M. Sato, K. Takeda, T. Ariyama, Tetsu-to-Hagané 97 (2011) 501–509.

    Article  Google Scholar 

  23. K. Higuchi, S. Nomura, K. Kunitomo, H. Yokoyama, M. Naito, ISIJ Int. 51 (2011) 1308–1315.

    Article  Google Scholar 

  24. M. Naito, A. Okamoto, K. Yamaguchi, T. Yamaguchi, Y. Inoue, Nippon Steel Technical Report 94 (2006) 103–108.

    Google Scholar 

  25. H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, J. Tang, Z.W. Ying, Powder Technol. 328 (2018) 318–328.

    Article  Google Scholar 

  26. H.T. Wang, M.S. Chu, Z.H. Wang, W. Zhao, Z.G. Liu, J. Tang, Z.W. Ying, JOM 70 (2018) 1929–1936.

    Article  Google Scholar 

  27. H. Wang, M. Chu, W. Zhao, R. Wang, Z. Liu, J. Tang, Ironmak. Steelmak. 43 (2016) 571–580.

    Article  Google Scholar 

  28. H.T. Wang, M.S. Chu, J.W. Bao, Z.G. Liu, J. Tang, H.M. Long, Fuel 268 (2020) 117339.

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China-Liaoning Joint Funds (U1808212) and the National Natural Science Foundation of China (52074080 and 52004001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man-sheng Chu or Hong-ming Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ht., Chu, Ms., Bao, Jw. et al. Non-isothermal reduction process analysis of iron-bearing burden with charging iron coke hot briquette under simulated blast furnace conditions. J. Iron Steel Res. Int. 29, 741–750 (2022). https://doi.org/10.1007/s42243-021-00640-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00640-z

Keywords

Navigation