Skip to main content
Log in

Effect of yttrium treatment on alumina inclusions in high carbon steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Aluminum oxide inclusions in SWRS82B steel seriously affect the drawing performance of steel strands. The effects of different addition amounts of yttrium (within the range of 0%–0.026%) on the composition, morphology, size and spacing of aluminum oxide inclusions were studied by scanning electron microscopy and energy spectrum analysis. Based on classical thermodynamics and FactSage software, the predominance diagram of inclusions in Fe–O–S–Y system and the effect of the addition of rare earth yttrium on the stability of alumina inclusions were calculated. The results showed that molten steel was modified by adding the rare earth element yttrium. It can be inferred that the approximate route of target inclusion modification was: Al2O3 → Y2S3 + YAlO3 + Al2O3 → Y2S3 + YAlO3 + Y2O2S + YAlO3 + Al2O3 → Y2S3 + Y2O2S. The experimental samples with 0.026% added yttrium had the best inclusion characteristics, in which the inclusion surface density distribution was uniform, and the interfacial distance between inclusions was mainly in the range of 100–500 μm. After modification, the average inclusion size in molten steel was reduced by 6.9–8.6 μm. The mechanism of yttrium modification was discussed based on actual calculation results and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

modified by adding different yttrium contents. a Sample S1; b sample S2; c sample S3; d sample S4

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Li, L. Wang, Z.L. Xue, C.Z. Li, A. Huang, F.F. Wang, Results Phys. 16 (2020) 102929.

    Article  Google Scholar 

  2. C.F. Yu, Z.L. Xue, W.T. Jin, J. Iron Steel Res. Int. 23 (2016) 338–343.

    Article  Google Scholar 

  3. C.P. Xin, F. Yue, C.X. Jiang, Q.F. Wu, High Temp. Mater. Proc. 35 (2016) 47–54.

    Article  Google Scholar 

  4. D.W. Guo, Z.B. Hou, J.H. Cao, Z.A. Guo, Y. Chang, G.H. Wen, J. Iron Steel Res. Int. 27 (2020) 1163–1170.

    Article  Google Scholar 

  5. L.P. Wu, J.S. Zhang, J.G. Zhi, Q. Liu, C. Su, S.B. Wang, L.L. Zou, Rare Met. Mater. Eng. 49 (2020) 2800–2806.

    Google Scholar 

  6. C.Y. Yang, Y.K. Luan, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 35 (2019) 1298–1308.

    Article  Google Scholar 

  7. H.P. Wang, L. Xiong, L. Zhang, Y. Wang, Y.Y. Shu, Y.H. Zhou, Metall. Mater. Trans. B 48 (2017) 2849–2859.

    Article  Google Scholar 

  8. Z. Adabavazeh, W.S. Hwang, Y.H. Su, Sci. Rep. 7 (2017) 46503.

    Article  Google Scholar 

  9. X.D. Zou, D.P. Zhao, J.C. Sun, C. Wang, H. Matsuura, Metall. Mater. Trans. B 49 (2018) 481–490.

    Article  Google Scholar 

  10. Y. Ren, Y.F. Wang, S.S. Li, L.F. Zhang, X.J. Zuo, S.N. Lekakh, K. Peaslee, Metall. Mater. Trans. B 45 (2014) 1291–1303.

    Article  Google Scholar 

  11. H.T. Ling, L.F. Zhang, JOM 65 (2013) 1155–1163.

    Article  Google Scholar 

  12. X.L. Zhang, S.F. Li, J.S. Yang, J.Q. Wu, Int. J. Miner. Metall. Mater. 27 (2020) 754–763.

    Article  Google Scholar 

  13. Z.G. Wang, C.M. Song, Y.H. Zhang, H. Wang, L. Qi, B. Yang, Mater. Charact. 151 (2019) 112–118.

    Article  Google Scholar 

  14. L. Li, D.Y. Li, J. Phys. Condes. Matter 31 (2019) 1361–1366.

    Google Scholar 

  15. G.X. Qiu, D.P. Zhan, C.S. Li, Y.K. Yang, Z.H. Jiang, H.S. Zhang, Nucl. Eng. Technol. 52 (2019) 811–818.

    Article  Google Scholar 

  16. D.F. Liu, J. Qin, Y.H. Zhang, Z.G. Wang, J.C. Nie, Mater. Sci. Eng. A 797 (2020) 140238.

    Article  Google Scholar 

  17. X.L. Kang, S.Y. Dong, H.B. Wang, S.X. Yan, X.T. Liu, B.S. Xu, Mater. Des. 188 (2020) 108434.

    Article  Google Scholar 

  18. G.J. Cai, Y. Li, Y.R. Huang, R.D.K. Misra, ISIJ Int. 60 (2020) 2541–2548.

    Article  Google Scholar 

  19. S. Gerasin, D. Kalisz, J. Iwanciw, J. Min. Metall. Sect. B Metall. 56 (2019) 11–25.

    Article  Google Scholar 

  20. F. Pan, H.L. Chen, Y.H. Su, Y.H. Su, W.S. Hwang, Sci. Rep. 7 (2017) 2564–2571.

    Article  Google Scholar 

  21. C. Pascal, M. Braccini, V. Parry, E. Fedorova, M. Mantel, D. Oquab, D. Monceau, Mater. Charact. 127 (2017) 161–170.

    Article  Google Scholar 

  22. H.G. Fu, Q. Xiao, J.C. Kuang, Z.Q. Jiang, J.D. Xing, Mater. Sci. Eng. A 466 (2007) 160–165.

    Article  Google Scholar 

  23. J. Yang, D.N. Zou, X.M. Li, Z.Z. Du, J. Iron Steel Res. Int. 14 (2007) 47–52.

    Article  Google Scholar 

  24. H.J. Duan, Y. Zhang, Y. Ren, L.F. Zhang, J. Iron Steel Res. Int. 26 (2019) 962–972.

    Article  Google Scholar 

  25. X.H. Huang, Principles of iron and steel metallurgy, 3rd ed., Metallurgical Industry Press, Beijing, China, 1981.

    Google Scholar 

  26. W.N. Shi, S.F. Yang, J.S. Li, Sci. Rep. 8 (2018) 4830–4839.

    Article  Google Scholar 

  27. C.H. Wu, Study on behavior of inclusions in yttrium-based rare earth microalloyed E36 cast slab, University of Science and Technology Jiangxi, Ganzhou, China, 2016.

    Google Scholar 

  28. Y. Ren, L.F. Zhang, Y. Zhang, J. Iron Steel Res. Int. 25 (2018) 146–156.

    Article  Google Scholar 

Download references

Acknowledgements

No potential conflict of interest was reported by the author(s). This work was financially supported by the National Natural Science Foundation of China (Nos. 51864013 and 52074095). Also, this project supported by National Natural Science Foundation of Guizhou Province with grant No. [2019] 1086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-rong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Cr., Wang, Lz. et al. Effect of yttrium treatment on alumina inclusions in high carbon steel. J. Iron Steel Res. Int. 29, 655–664 (2022). https://doi.org/10.1007/s42243-021-00633-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00633-y

Keywords

Navigation