Skip to main content
Log in

Effect of Nb addition on microstructure and mechanical properties of 25CrNiMoV (DZ2) steel for high-speed railway axles

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructure, precipitates and properties of 25CrNiMoV (DZ2) steel for high-speed railway axles with different Nb contents were investigated by means of optical microscopy, scanning electron microscopy, electron back-scattering diffraction, transmission electron microscopy and physicochemical phase analysis. The results show that the grain size of the original austenite of the test steels decreases from 20.5 to 14.2 and 10.8 μm after adding 0.026 and 0.039 wt.% Nb to a 25CrNiMoV steel, respectively. Moreover, the block width of the tempered martensite in the test steels is refined from 1.91 to 1.72 and 1.60 µm, respectively. MC-type precipitates in 25CrNiMoV steel are mainly VC, while (Nb,V)C gradually precipitates when Nb is microalloyed, and the amount of precipitates increases with increasing Nb content. Through strengthening mechanism analysis, it is found that grain refinement strengthening is the primary way to increase the strength. The improvement in the yield strength with increasing Nb content is attributed to a significant increase in precipitation strengthening, grain refinement strengthening and dislocation strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Regazzi, S. Beretta, M. Carboni, Eng. Fract. Mech. 131 (2014) 587–601.

    Article  Google Scholar 

  2. M. Yamamoto, K. Makino, H. Ishiduka, Int. J. Fatigue 92 (2016) 159–165.

    Article  Google Scholar 

  3. Y.N. Hu, S.C. Wu, P.J. Withers, H.T. Cao, P. Chen, Y.J. Zhang, Z. Shen, T. Vojtek, P. Hutař, Eng. Fract. Mech. 245 (2021) 107588.

    Article  Google Scholar 

  4. Y.N. Hu, Q.B. Qin, S.C. Wu, X. Zhao, W.J. Wang, Int. J. Fatigue 144 (2021) 106068.

    Article  Google Scholar 

  5. Q.L. Yong, Secondary phases in steels, Metallurgical Industry Press, Beijing, China, 2006.

  6. C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, K.M. Sun, Mater. Sci. Eng. A 534 (2012) 339–346.

  7. T.N. Baker, Ironmak. Steelmak. 43 (2016) 264–307.

    Article  Google Scholar 

  8. M. Lei, W.J. Hui, J.J. Wang, Y.J. Zhang, X.L. Zhao, J. Iron Steel Res. Int. 27 (2020) 537–548.

    Article  Google Scholar 

  9. H.L. Yi, L.R. Zhang, R.H. Duan, X.Z. Liang, J. Iron Steel Res. Int. 26 (2019) 838–845.

    Article  Google Scholar 

  10. Y.F. Jin, T. Zhang, Q.Y. Zang, Y.T. Yang, J. Iron Steel Res. Int. 26 (2019) 462–471.

    Article  Google Scholar 

  11. J. Fernández, S. Illescas, J.M. Guilemany, Mater. Lett. 61 (2007) 2389–2392.

    Article  Google Scholar 

  12. M. Maalekian, R. Radis, M. Militzer, A. Moreau, W.J. Poole, Acta Mater. 60 (2012) 1015–1026.

    Article  Google Scholar 

  13. J.G. Speer, S.S. Hansen, Metall. Mater. Trans. A 20 (1989) 25–38.

    Article  Google Scholar 

  14. Y. Ohmori, Trans. Iron Steel Inst. Jpn. 15 (1975) 194–203.

    Article  Google Scholar 

  15. A. Ray, Mater. Sci. Technol. 33 (2017) 1584–1600.

    Article  Google Scholar 

  16. G.K. Williamson, W.H. Hall, Acta Metall. 1 (1953) 22–31.

    Article  Google Scholar 

  17. C.F. Wang, M.Q. Wang, J. Shi, W. Hui, H. Dong, Scripta Mater. 58 (2008) 492–495.

    Article  Google Scholar 

  18. S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438–440 (2006) 237–240.

    Article  Google Scholar 

  19. Z.J. Luo, J.C. Shen, H. Su, Y.H. Ding, C.F. Yang, X. Zhu, J. Iron Steel Res. Int. 17 (2010) No. 11, 40–48.

    Article  Google Scholar 

  20. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, J. Mater. Sci. Technol. 23 (2007) 659–664.

    Google Scholar 

  21. G.S. Ansell, A. Arrot, Trans. Metall. Soc. AIME 227 (1963) 1080–1082.

    Google Scholar 

  22. Q.L. Yong, M.T. Ma, B.R. Wu, Microalloyed steels – physical and mechanical metallurgy, China Machine Press, Beijing, China, 1989.

  23. N. Hansen, Scripta Mater. 51(2004) 801–806.

    Article  Google Scholar 

  24. Y. Han, Investigation on the (Ti,Mo)C precipitation behavior and the mechanical properties in low carbon martensitic steels, Central Iron and Steel Research Institute, Beijing, China, 2013.

  25. M.F. Ashby, Philos. Mag. 21 (1970) 399–424.

    Article  Google Scholar 

  26. D.A. Hughes, Mater. Sci. Eng. A 319–321 (2001) 46–54.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (No. 2017YFB0304600). For completing this article, I would like to express my great gratitude to those who have helped me a lot in the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-xian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jw., Cao, Yg., Zhang, Cg. et al. Effect of Nb addition on microstructure and mechanical properties of 25CrNiMoV (DZ2) steel for high-speed railway axles. J. Iron Steel Res. Int. 29, 802–809 (2022). https://doi.org/10.1007/s42243-021-00613-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00613-2

Keywords

Navigation