Skip to main content
Log in

Evolution of microstructure in reheated coarse-grained zone of G115 novel martensitic heat-resistant steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on the thermal simulation method, a systematical analysis was conducted on the effect of welding peak temperature and the cooling time that takes place from 800 to 500 °C on microstructure, precipitates, substructure and microhardness of the reheated coarse-grained heat-affected zone (CGHAZ) of G115 novel martensitic heat-resistant steel. As revealed from the results, the microstructure of un-altered CGHAZ (UACGHAZ) and supercritically CGHAZ (SCCGHAZ) was lath martensite, and structural heredity occurred. Intercritically reheated CGHAZ (IRCGHAZ) exhibited martensite and over-tempered martensite, and subcritical CGHAZ (SCGHAZ) displayed martensite and under-tempered martensite. The austenite in UACGHAZ and SCCGHAZ was transformed with the diffusion mechanism during the first thermal cycle, but with the non-diffusion mechanism during the second thermal cycle. For this reason, Ac1 and Ac3 during the second thermal cycle were significantly lower than those during the first thermal cycle, and Ac1 and Ac3 were reduced by nearly 14 and 44 °C, respectively. Since the content and stability of the austenite alloy during the second thermal cycle of IRCGHAZ were lower than those during the first thermal cycle, Ms increased by nearly 30 °C. There were considerable precipitates in the over-tempered region of IRCGHAZ, and the Laves phase was contained, which was not conducive to high-temperature creep property. Moreover, the dislocation density and the number of sub-grains in the region were lower, resulting in a sharp decrease in the microhardness, and it was the weak area in the reheated CGHAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z.D. Liu, Z.Z. Chen, X.K. He, H.S. Bao, Acta Metall. Sin. (Engl. Lett.) 56 (2020) 539–548.

    Google Scholar 

  2. M. Sireesha, S. Sundaresan, S.K. Albert, J. Mater. Eng. Perform. 10 (2001) 320–330.

    Article  Google Scholar 

  3. J. Klöwer, R.U. Husemann, M. Bader, Proced. Eng. 55 (2013) 226–231.

    Article  Google Scholar 

  4. P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, W. Liu, Mater. Sci. Eng. A 597 (2014) 148–156.

    Article  Google Scholar 

  5. P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, W. Liu, Mater. Des. 54 (2014) 874–879.

    Article  Google Scholar 

  6. P. Yan, Z.D. Liu, Mater. Sci. Eng. A 650 (2016) 290–294.

    Article  Google Scholar 

  7. L.Y. Xu, J.Y. Rong, L. Zhao, H.Y. Jing, Y.D. Han, Mater. Sci. Eng. A 726 (2018) 179–186.

    Article  Google Scholar 

  8. B. Xiao, L.Y. Xu, Z.X. Tang, L. Zhao, H.Y. Jing, Y.D. Han, H.Z. Li, Mater. Sci. Eng. A 747 (2019) 161–176.

    Article  Google Scholar 

  9. Z. Liu, Z.D. Liu, X.T. Wang, Z.Z. Chen, L.T. Ma, Mater. Sci. Eng. A 729 (2018) 161–169.

    Article  Google Scholar 

  10. F. Abe, M. Tabuchi, S. Tsukamoto, T. Shirane, Int. J. Pres. Ves. Pip. 87 (2010) 598–604.

    Article  Google Scholar 

  11. S.K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, M. Tabuchi, Int. J. Pres. Ves. Pip. 80 (2003) 405–413.

    Article  Google Scholar 

  12. T. Matsunaga, H. Hongo, M. Tabuchi, R. Sahara, Mater. Sci. Eng. A 655 (2016) 168–174.

    Article  Google Scholar 

  13. K.G. Abstoss, S. Schmigalla, S. Schultze, P. Mayr, Mater. Sci. Eng. A 743 (2019) 233–242.

    Article  Google Scholar 

  14. W.B. Gao, D.P. Wang, F.J. Cheng, X.J. Di, C.Y. Deng, W. Xu, J. Mater. Process. Technol. 238 (2016) 333–340.

    Article  Google Scholar 

  15. K. Peng, C.L. Yang, S.B. Lin, C.L. Fan, Int. J. Adv. Manuf. Technol. 90 (2017) 3387–3395.

    Article  Google Scholar 

  16. K.S. Arora, S.R. Pandu, N. Shajan, P. Pathak, M. Shome, Int. J. Pres. Ves. Pip. 163 (2018) 36–44.

    Article  Google Scholar 

  17. X. Wang, J.W. Chang, G.Z. Huang, Y.L. Zhang, Trans. China Weld. Inst. 29 (2008) No. 10, 29–32+114.

    Google Scholar 

  18. X. Wang, J.W. Chang, F.Y. Chen, M.L. Qiu, Trans. China Weld. Inst. 29 (2008) No. 3, 9–12+153.

    Google Scholar 

  19. X. Xu, G.D. West, J.A Siefert, J.D. Parker, R.C. Thomson, Metall. Mater. Trans. A 49 (2018) 1211–1230.

    Article  Google Scholar 

  20. Y. Liu, S. Tsukamoto, K. Sawada, M. Tabuchi, F. Abe, Metall. Mater. Trans. A 46 (2015) 1843–1854.

    Article  Google Scholar 

  21. S.T. Kimmins, D.J. Gooch, Met. Sci. 17 (1983) 519–532.

    Article  Google Scholar 

  22. N. Nakada, T. Tsuchiyama, S. Takaki, S. Hashizume, ISIJ Int. 47 (2007) 1527–1532.

    Article  Google Scholar 

  23. T.Y. Hsu (Z.Y. Xu), Y.W. Mou, Acta Metall. 32 (1984) 1469–1481.

  24. W. Klement Jr., A. Jayaraman, Prog. Solid State Chem. 3 (1967) 289–298.

    Article  Google Scholar 

  25. F.C. Zhang, T.Q. Lei, Wear 212 (1997) 195–198.

    Article  Google Scholar 

  26. A. Aghajani, F. Richter, C. Somsen, S.G. Fries, I. Steinbach, G. Eggeler, Scripta Mater. 61 (2009) 1068–1071.

    Article  Google Scholar 

  27. Y.T. Xu, M.J. Wang, Y. Wang, T. Gu, L. Chen, X. Zhou, Q. Ma, Y.M. Liu, J. Huang, J. Alloy. Compd. 621 (2015) 93–98.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support of National Key R&D Program of China (No. 2017YFB0305202), Inner Mongolia Natural Science Foundation (No. 2016MS0510), and Inner Mongolia Natural Science Foundation (No. 2020MS05046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-yi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Zy., Chen, Zz., Kou, Dx. et al. Evolution of microstructure in reheated coarse-grained zone of G115 novel martensitic heat-resistant steel. J. Iron Steel Res. Int. 29, 327–338 (2022). https://doi.org/10.1007/s42243-021-00606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00606-1

Keywords

Navigation