Skip to main content
Log in

Heat transfer characteristics for double-jet in different flow regions on a thick plate

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

During multi-jet cooling, the complex hydrodynamic characteristics caused by the interaction between jets will affect the heat transfer of the plate. To further clarify the heat transfer characteristics in different flow regions, the double-jet cooling experiments were completed on a 50-mm-thick plate with the initial cooling temperature and jet angle in the range of 300–900 °C and 0°–60°, respectively. The inverse heat conduction was used to calculate the surface temperature and heat flux. Furthermore, the rewetting phenomenon, maximum heat flux and maximum cooling speed were studied. The results show that increasing the angle between jet and wall normal would increase the wetting front’s width downstream of the jet point. When the jet angle was 60°, the maximum value increased by 37.29 mm compared with that when the angle was 0°. The correlation between the width of the wetting front and the radial temperature gradient was further confirmed. In addition, it was found that the maximum heat flux would be affected by the duration of transition boiling, but not affected by complete wetting time. The results clarified the heat transfer mechanisms under various initial cooling temperature and inclination angle conditions on plate cooling in different flow regions, and provided valuable data for controlling heat transfer efficiency and improving cooling uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.L. Fu, X.T. Deng, G.H. Liu, Z.D. Wang, G.D. Wang, Int. J. Precis. Eng. Man. 17 (2016) 1503–1514.

    Article  Google Scholar 

  2. L. Qiu, S. Dubey, F.H. Choo, F. Duan, Int. J. Heat Mass Transfer 89 (2015) 42–58.

    Article  Google Scholar 

  3. C. Agrawal, Steel Res. Int. 90 (2019) 1800285.

    Article  Google Scholar 

  4. Z.X. Wen, Y.L. He, Z. Ma, Comput. Fluids 164 (2018) 83–93.

    Article  MathSciNet  Google Scholar 

  5. A. Yildizeli, S. Cadirci, Int. J. Heat Mass Transfer 158 (2020) 119978.

    Article  Google Scholar 

  6. T.L. Fu, Z.D. Wang, Y. Li, J.D. Li, G.D. Wang, Appl. Therm. Eng. 70 (2014) 800–807.

    Article  Google Scholar 

  7. T.L. Fu, Z.D. Wang, X.T. Deng, G.H. Liu, G.D. Wang, Appl. Therm. Eng. 2015 (78) 500–506.

    Article  Google Scholar 

  8. H. Fujimoto, N. Hayashi, J. Nakahara, K. Morisawa, T. Hama, H. Takuda, ISIJ Int. 56 (2016) 2016–2021.

    Article  Google Scholar 

  9. A.K. Mozumder, M. Monde, P.L. Woodfield, M.A. Islam, Int. J. Heat Mass Transfer 49 (2006) 2877–2888.

    Article  Google Scholar 

  10. A.K. Mozumder, M. Monde, P.L. Woodfield, Int. J. Heat Mass Transfer 48 (2005) 5395–5407.

    Article  Google Scholar 

  11. P.L. Woodfield, A.K. Mozumder, M. Monde, Int. J. Heat Mass Transfer 52 (2009) 460–465.

    Article  Google Scholar 

  12. N. Karwa, T. Gambaryan-Roisman, P. Stephan, C. Tropea, Exp. Therm. Fluid Sci. 35 (2011) 1435–1443.

    Article  Google Scholar 

  13. A.K. Mozumder, P.L. Woodfield, M.A. Islam, M. Monde, Int. J. Heat Mass Transfer 50 (2007) 1559–1568.

    Article  Google Scholar 

  14. S.J. Yi, M. Kim, D. Kim, H.D. Kim, K.C. Kim, Int. J. Heat Mass Transfer 102 (2016) 691–702.

    Article  Google Scholar 

  15. C. Wang, X.K. Wang, W.D. Shi, W.G. Lu, S.K. Tan, L. Zhou, Exp. Therm. Fluid Sci. 89 (2017) 189–198.

    Article  Google Scholar 

  16. J.F. Lu, B. Bourouga, J. Ding, Int. Commun. Heat Mass Transfer 48 (2013) 15–21.

    Article  Google Scholar 

  17. X.H. Tian, T.L. Fu, J.W. Zhang, Z.D. Wang, G.D. Wang, ISIJ Int. 60 (2020) 1993–1999.

    Article  Google Scholar 

  18. C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee, Exp. Therm. Fluid Sci. 42 (2012) 25–37.

    Article  Google Scholar 

  19. B.X. Wang, D. Lin, Q. Xie, Z.D. Wang, G.D. Wang, Appl. Therm. Eng. 100 (2016) 902–910.

    Article  Google Scholar 

  20. D.E. Hall, F.P. Incropera, R. Viskanta, J. Heat Transfer 123 (2001) 911–917.

    Article  Google Scholar 

  21. D.E. Hall, F.P. Incropera, R. Viskanta, J. Heat Transfer 123 (2001) 901–910.

    Article  Google Scholar 

  22. N. Karwa, P. Stephan, Int. J. Heat Mass Transfer 64 (2013) 1118–1126.

    Article  Google Scholar 

  23. S.A. Ebrahim, S. Chang, F.B. Cheung, S.M. Bajored, Appl. Therm. Eng. 140 (2018) 139–146.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Programs of China (Grant No. 2017YFB0305102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-liang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Xh., Fu, Tl., Wang, Zd. et al. Heat transfer characteristics for double-jet in different flow regions on a thick plate. J. Iron Steel Res. Int. 28, 1400–1407 (2021). https://doi.org/10.1007/s42243-020-00553-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00553-3

Keywords

Navigation