Skip to main content

Advertisement

Log in

Microstructure, property and deformation and fracture behavior of 800 MPa complex phase steel with different coiling temperatures

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructure characteristics and properties (especially hole expansion property) of 800 MPa hot-rolled complex phase steel with different coiling temperatures were studied. The microstructure consisted of polygonal ferrite and precipitates when the steel was coiled at 550 °C, and when the steel was coiled between 460–520 °C, the microstructure was composed of granular bainite and martensite and austenite (M/A) islands. The morphology of the crack was analyzed by scanning electron microscopy, and the in situ scanning electron microscope tensile test was used to find out the fracture mechanism and deformation behavior of the steel with different coiling temperatures. When the steel was coiled at 550 °C, the cracks initiated at the ferrite grain boundary and propagated through the grains or along the grain boundaries. When the steel was coiled at 520 °C, the cracks first initiated at the junction of ferrite and M/A island and then propagated through the grains. The steel coiled at 520 °C has quite good mechanical properties and relatively high hole expansion ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.S. Kang, Y. Huang, C.W. Lee, C.G. Park, Adv. Mater. Res. 15–17 (2007) 786–791.

    Google Scholar 

  2. K. Muszka, J. Majta, D. Dziedzic, Mater. Sci. Forum 762 (2013) 146–151.

    Article  Google Scholar 

  3. S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, P. Hodgson, J. Iron Steel Res. Int. 18 (2011) 478–481.

    Google Scholar 

  4. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann, S.G. Jansto, Mater. Sci. Eng. A 478 (2008) 26–37.

    Article  Google Scholar 

  5. Z.Z. Zhao, H.X. Yin, A.M. Zhao, Z.Q. Gong, J.G. He, T.T. Tong, H.J. Hu, Mater. Sci. Eng. A 613 (2014) 8–16.

    Article  Google Scholar 

  6. J. Hu, L.X. Du, J.J. Wang, Mater. Sci. Eng. A 554 (2012) 79–85.

    Article  Google Scholar 

  7. Y. Luo, J.M. Peng, H.B. Wang, X.C. Wu, Mater. Sci. Eng. A 527 (2010) 3433–3437.

    Article  Google Scholar 

  8. S.Y. Shin, S.Y. Han, B. Hwang, C.G. Lee, S. Lee. Mater. Sci. Eng. A 517 (2009) 212–218.

    Article  Google Scholar 

  9. H.J. Jun, J.S. Kang, D.H. Seo, K.B. Kang, C.G. Park, Mater. Sci. Eng. A 422 (2006) 157–162.

    Article  Google Scholar 

  10. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 34 (2003) 1599–1609.

    Article  Google Scholar 

  11. J.S. Lee, D. Lee, M. Lee, C. Park, Y.D. Park, N. Kang, Steel Res. Int. 88 (2017) e201700016.

    Article  Google Scholar 

  12. W.D. Li, L.X. Ma, P. Peng, Q. Jia, Z.D. Wan, Y. Zhu, W. Guo, Mater. Sci. Eng. A 717 (2018) 124–133.

    Article  Google Scholar 

  13. S. Kuang, X.M. Qi, Y. Han, W.L. Yu, in: The 2nd International Conference on Advanced High Strength Steel and Press Hardening, China Automotive Engineering Research Institute, Changsha, China, 2016, pp. 186–191.

  14. T. Suzuki, K. Okamura, Y. Ishimaru, H. Hamasaki, Key Eng. Mater. 725 (2016) 592–597.

    Article  Google Scholar 

  15. M.M. Nowell, S.I. Wright, J. Microscopy 213 (2004) 296–305.

    Article  MathSciNet  Google Scholar 

  16. C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, Y.B. Chen, Mater. Sci. Eng. A 731 (2018) 173–183.

    Article  Google Scholar 

  17. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A 604 (2014) 135–141.

    Article  Google Scholar 

  18. Q.G. Li, X.F. Huang, W.G. Huang, Mater. Sci. Eng. A 662 (2016) 129–135.

    Article  Google Scholar 

  19. M.C. Zhao, X.F. Huang, A. Atrens, Mater. Sci. Eng. A 549 (2012) 222–227.

    Article  Google Scholar 

  20. V.H.B. Hernandez, S.K. Panda, Y. Okita, N.Y. Zhou, J. Mater. Sci. 45 (2010) 1638–1647.

    Article  Google Scholar 

  21. B.W. Choi, D.H. Seo, J.Y. Yoo, J. Jang, J. Mater. Res. 24 (2009) 816–822.

    Article  Google Scholar 

  22. H. Zakerinia, A. Kermanpur, A. Najafizadeh, Mater. Sci. Eng. A 528 (2011) 3562–3567.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of China Electric Power Research Institute (No. 51601174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-zhi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Jz., Zhao, Zz., Tang, D. et al. Microstructure, property and deformation and fracture behavior of 800 MPa complex phase steel with different coiling temperatures. J. Iron Steel Res. Int. 28, 346–359 (2021). https://doi.org/10.1007/s42243-020-00502-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00502-0

Keywords

Navigation