Skip to main content
Log in

Effect of cold rolling and annealing on microstructure and properties of a new resource-saving duplex stainless steel Fe–19Cr–0.6Al–12Mn

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

An Fe–19Cr–0.6Al–12Mn duplex stainless steel with an optimized alloy composition of Ni replaced by Mn and Cr partially replaced by Al was developed to avoid the edge cracking, which is a common defect in the hot rolling of traditional two-phase stainless steels. The newly developed duplex stainless steel could be hot-rolled in the single-phase ferrite (α) region by controlling rolling temperature and the single-phase ferrite microstructure was retained on water cooling. To obtain the two-phase stainless steel product with ferrite and austenite (γ) microstructure, cold rolling and annealing were carried out, and appropriate cold rolling reduction and annealing process parameters were determined. The significant impact of annealing on microstructure, mechanical properties and pitting resistance of the experimental steel was studied. It was observed that with the increase in cold rolling reduction, the number of γ nucleation points was dramatically increased leading to the precipitation of more γ at α grain boundaries after annealing. During annealing at 800 °C and with the increase in annealing time, the austenite fraction was increased with a lower rate and remained almost constant when the annealing time was greater than 4 h. With the increase in annealing temperature, the austenite fraction decreased gradually in the temperature range of 750–860 °C. Good combination of strength, ductility and excellent pitting resistance was obtained by cold rolling to 80% reduction and annealing at 800 °C for 4 h. Grain refinement and the existence of Σ3 boundaries played a vital role in improving the pitting resistance of the experimental steel. With good combination of strength, ductility and corrosion resistance, the newly developed duplex stainless steel is expected to be a new resource-saving dual-phase stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. X.Q. Cheng, Y. Wang, X.G. Li, C.F. Dong, J. Mater. Sci. Technol. 34 (2018) 174–182.

    Google Scholar 

  2. H.Y. Ha, M.H. Jang, T.H. Lee, J. Moon, Corros. Sci. 89 (2014) 154–162.

    Google Scholar 

  3. J.Q. Wan, Y. Lou, H.H. Ruan, Corros. Sci. 139 (2018) 13–20.

    Google Scholar 

  4. Y. Zhao, X. Liu, X. Li, Y. Wang, W.N. Zhang, Z.Y. Liu, J. Mater. Sci. 53 (2018) 824–836.

    Google Scholar 

  5. K.H. Lo, C.H. Shek, J.K. Lai, Mater. Sci. Eng. R 65 (2009) 39–104.

    Google Scholar 

  6. J. Rys, G. Cempura, Mater. Sci. Eng. A 700 (2017) 656–666.

    Google Scholar 

  7. Y.C. Hsieh, L. Zhang, T.F. Chung, Y.T. Tsai, J.R. Yang, T. Ohmura, T. Suzuki, Scripta Mater. 125 (2016) 44–48.

    Google Scholar 

  8. Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, Mater. Des. 109 (2016) 670–685.

    Google Scholar 

  9. D.K. Xu, J. Xia, E.Z. Zhou, D.W. Zhang, H.B. Li, C.G. Yang, Q. Li, H. Lin, X.G. Li, K. Yang, Bioelectrochemistry 113 (2017) 1–8.

    Google Scholar 

  10. P. Sathiya, S. Aravindan, R. Soundararajan, A. Noorul Haq, J. Mater. Sci. 44 (2009) 114–121.

    Google Scholar 

  11. J. Charles, Rev. Met. Paris 105 (2008) 155–171.

    Google Scholar 

  12. J. Li, Y.L. Xu, X.H. Xiao, J.L. Zhao, L.Z. Jiang, J.C. Hu, Mater. Sci. Eng. A 527 (2009) 245–251.

    Google Scholar 

  13. J. Li, Z.H. Ma, X.H. Xiao, J.L. Zhao, L.Z. Jiang, Mater. Des. 32 (2011) 2199–2205.

    Google Scholar 

  14. J.Y. Choi, J.H. Ji, S.W. Hwang, K.T. Park, Mater. Sci. Eng. A 534 (2012) 673–680.

    Google Scholar 

  15. J. Wang, P.J. Uggowitzer, R. Magdowski, M.O. Speidel, Scripta Mater. 40 (1998) 123–129.

    Google Scholar 

  16. L. Chen, X.C. Ma, X. Liu, L.M. Wang, Mater. Des. 32 (2011) 1292–1297.

    Google Scholar 

  17. A. Momeni, K. Dehghani, H. Keshmiri, G.R. Ebrahimi, Mater. Sci. Eng. A 527 (2010) 1605–1611.

    Google Scholar 

  18. Y.L. Fang, Z.Y. Liu, H.M. Song, L.Z. Jiang, Mater. Sci. Eng. A 526 (2009) 128–133.

    Google Scholar 

  19. J.Q. Wan, H.H. Ruan, S.Q. Shi, Mater. Sci. Eng. A 690 (2017) 96–103.

    Google Scholar 

  20. J.Q. Wan, Q.X. Ran, J. Li, Y.L. Xu, X.S. Xiao, H.F. Yu, L.Z. Jiang, Mater. Des. 53 (2014) 43–50.

    Google Scholar 

  21. A. Ul-Haq, H. Weiland, H.J. Bunge, Mater. Sci. Technol. 10 (1994) 289–298.

    Google Scholar 

  22. W. Zhang, J.W. Elmer, T. DebRoy, Mater. Sci. Eng. A 333 (2002) 320–335.

    Google Scholar 

  23. P. Krüger, J. Phys. Chem. Solids 54 (1993) 1549–1555.

    Google Scholar 

  24. T.H. Chen, J.R. Yang, Mater. Sci. Eng. A 338 (2002) 166–181.

    Google Scholar 

  25. Z. Fan, P. Tsakiropoulos, P.A. Smith, A.P. Miodownik, Philos. Mag. A 67 (1993) 515–531.

    Google Scholar 

  26. Z. Fan, P. Tsakiropoulos, A.P. Miodownik, Mater. Sci. Technol. 8 (1992) 922–929.

    Google Scholar 

  27. H.Y. Ha, T.H. Lee, C.G. Lee, H. Yoon, Corros. Sci. 149 (2019) 226–235.

    Google Scholar 

  28. H.Y. Ha, M.H. Jang, T.H. Lee, J. Moon, Mater. Charact. 106 (2015) 338–345.

    Google Scholar 

  29. J.W. Simmons, Mater. Sci. Eng. A 207 (1996) 159–169.

    Google Scholar 

  30. E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, M. Vedani, J. Mech. Behavior Biomed. Mater. 37 (2014) 307–322.

    Google Scholar 

  31. A.E.A.M. Ibrahim, M.M. Sadawy, Trans. Nonferrous Met. Soc. China 25 (2015) 3865–3876.

    Google Scholar 

  32. Y. Liu, B. Jin, J. Lu, Mater. Sci. Eng. A 636 (2015) 446–451.

    Google Scholar 

  33. V.Y. Gertsman, S.M. Bruemmer, Acta Mater. 49 (2001) 1589–1598.

    Google Scholar 

  34. V. Randle, Acta Mater. 47 (1999) 4187–4196.

    Google Scholar 

  35. E.A. Trillo, L.E. Murr, Acta Mater. 47 (1998) 235–245.

    Google Scholar 

  36. G.Z. Meng, Y. Li, Y.W. Shao, T. Zhang, Y.Q. Wang, F.H. Wang, X.Q. Cheng, C.F. Dong, X.G. Li, J. Mater. Sci. Technol. 31 (2015) 1186–1192.

    Google Scholar 

  37. G.Z. Meng, Y. Li, Y.W. Shao, T. Zhang, Y.Q. Wang, F.H. Wang, X.Q. Cheng, C.F. Dong, X.G. Li, J. Mater. Sci. Technol. 32 (2016) 465–469.

    Google Scholar 

  38. S. Gollapudi, Corros. Sci. 62 (2012) 90–94.

    Google Scholar 

  39. J.L. Lv, T.X. Liang, C. Wang, L.M. Dong, Mater. Sci. Eng. C 62 (2016) 558–563.

    Google Scholar 

  40. F.L. Sun, G.Z. Meng, T. Zhang, Y.W. Shao, F.H. Wang, C.F. Dong, X.G. Li, Electrochim. Acta 54 (2009) 1578–1583.

    Google Scholar 

  41. G.Z. Meng, F.L. Sun, Y.W. Shao, T. Zhang, F.H. Wang, C.F. Dong, X.G. Li, Electrochim. Acta 55 (2010) 2575–2581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Mm., Zhang, Xm., Chen, Y. et al. Effect of cold rolling and annealing on microstructure and properties of a new resource-saving duplex stainless steel Fe–19Cr–0.6Al–12Mn. J. Iron Steel Res. Int. 27, 1420–1432 (2020). https://doi.org/10.1007/s42243-020-00438-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00438-5

Keywords

Navigation