Skip to main content
Log in

Carbide dissolution and austenite grain growth behavior of a new ultrahigh-strength stainless steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The isothermal grain growth behavior for a new ultrahigh-strength stainless steel (UHSSS) is investigated in temperature range from 900 to 1150 °C and holding time range from 0 to 20 min. In the temperature range from 1000 to 1050 °C, a bimodal grain size distribution was induced by different austenite grain growth rates which resulted from the weakened pinning effect by the partial dissolution of M6C particles along austenite grain boundaries. Further raising heating temperatures, M6C particles almost dissolved and the bimodal grain size distribution phenomenon became weakened, indicating that the austenite grain coarsening temperature of the new UHSSS was close to 1050 °C. According to the present experimental results, a pragmatic mathematical model based on the Arrhenius equations was developed to predict the austenite grain growth process, which elaborated the influence of heating temperature, holding time and initial grain size on the austenite grain growth. Predictions for the new UHSSS presented a good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Sun, K. Xiao, C. Dong, G. Li, P. Zhong, Corros. Sci. 89 (2014) 137–145.

    Article  Google Scholar 

  2. J. Luo, M.Q. Li, Y.G. Liu, H.M. Sun, Mater. Sci. Eng. A 534 (2012) 314–322.

    Article  Google Scholar 

  3. F. Liu, X. Lin, M. Song, H. Yang, K. Song, P. Guo, W. Huang, J. Alloy. Compd. 689 (2016) 225–232.

    Article  Google Scholar 

  4. H. Mirzadeh, A. Najafizadeh, M. Moazeny, Metall. Mater. Trans. A 40 (2009) 2950.

    Article  Google Scholar 

  5. M. Aghaie-Khafri, F. Adhami, Mater. Sci. Eng. A 527 (2010) 1052–1057.

    Article  Google Scholar 

  6. Y. Li, Y. Shen, W. Yan, G.J. Ryan, Y. Shen, W. Wang, Y. Shan, K. Yang, Mater. Des. 82 (2015) 56–63.

    Article  Google Scholar 

  7. Y. Xu, D. Tang, Y. Song, X. Pan, Mater. Des. 36 (2012) 275–278.

    Article  Google Scholar 

  8. J.L. Youngblood, M. Raghavan, Metall. Trans. A 8 (1977) 1439–1448.

    Article  Google Scholar 

  9. D. Dong, F. Chen, Z. Cui, J. Mater. Eng. Perform. 25 (2016) 152–164.

    Article  Google Scholar 

  10. Z. Cui, C. Li, F. Chen, D. Sui, AIP Conf. Proceed. 1532 (2013) 166–174.

    Google Scholar 

  11. P.A. Beck, J.C. Kremer, L. Demer, Phys. Rev. 71 (1947) 555.

    Article  Google Scholar 

  12. P.A. Beck, M.L. Holzworth, H. Hu, Phys. Rev. 73 (1948) 526.

    Article  Google Scholar 

  13. N. Raghunathan, T. Sheppard, Mater. Sci. Technol. 5 (1989) 542–547.

    Article  Google Scholar 

  14. C.M. Sellars, J.A. Whiteman, Met. Sci. 13 (1979) 187–194.

    Article  Google Scholar 

  15. S. Illescas, J. Fernández, J.M. Guilemany, Mater. Lett. 62 (2008) 3478–3480.

    Article  Google Scholar 

  16. S.J. Lee, Y.K. Lee, Mater. Des. 29 (2008) 1840–1844.

    Article  Google Scholar 

  17. S. Uhm, J. Moon, C. Lee, J. Yoon, B. Lee, ISIJ Int. 44 (2004) 1230–1237.

    Article  Google Scholar 

  18. P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, Acta Mater. 55 (2007) 4877–4889.

    Article  Google Scholar 

  19. S.K. Kurtz, F.M.A. Carpay, Vacuum 31 (1981) 277.

    Google Scholar 

  20. O. Hunderi, N. Ryum, J. Mater. Sci. 15 (1980) 1104–1108.

    Article  Google Scholar 

  21. P. Hellman, M. Hillert, Scand. J. Metall. 4 (1975) 211–219.

    Google Scholar 

  22. T. Gladman, Proc. Rep. Soc. London Series A 294 (1966) 298–309.

    Article  Google Scholar 

  23. C.J. Simpson, K.T. Aust, Surf. Sci. 31 (1972) 479–497.

    Article  Google Scholar 

  24. F. Liu, G. Xu, Y. L. Zhan, H.J. Hu, L.X. Zhou, Z.L. Xue, Int. J. Miner. Metall. Mater. 20 (2013) 1060–1066.

    Article  Google Scholar 

  25. A. Graux, S. Cazottes, D. De Castro, D. San Martín, C. Capdevila, J.M. Cabrera, S. Molas, S. Schreiber, D. Mirković, F. Danoix, M. Bugnet, D. Fabrègue, M. Perez, Materialia 5 (2019) 100233.

  26. E. Hersent, K. Marthinsen, E. Nes, Metall. Mater. Trans. A 45 (2014) 4882–4890.

    Article  Google Scholar 

  27. H. Pous-Romero, I. Lonardelli, D. Cogswell, H.K.D.H. Bhadeshiaa, Mater. Sci. Eng. A 567 (2013) 72–79.

    Article  Google Scholar 

  28. J. Fridberg, L.E. Törndahl, M. Hillert, Jernkontorets Ann. 153 (1969) 263–276.

    Google Scholar 

  29. A. Jain, A.K. Varshney, U.C. Joshi, Water Resour. Manag. 15 (2001) 299–321.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Key Research and Development Program of China (2016YFB0300104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zb., Tu, X., Wang, Xh. et al. Carbide dissolution and austenite grain growth behavior of a new ultrahigh-strength stainless steel. J. Iron Steel Res. Int. 27, 732–741 (2020). https://doi.org/10.1007/s42243-020-00429-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00429-6

Keywords

Navigation