Skip to main content
Log in

Mathematical model for design of optimized multi-component slag for electroslag remelting

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Slag is the heart of electroslag remelting (ESR) process. A new mathematical model to design the optimized slag for ESR was developed based on slag–metal equilibrium theory, ion and molecule coexistence theory and modified Butler’s equation. It was assumed that an overall thermodynamic equilibrium did exist at electrode tip–slag interface. With this model, the equilibrium slag and its surface tension could be obtained quantitatively when the initial compositions of consumable electrode were given. An industrial experiment with four types of slags was carried out in a special steel plant in China. The variation of Al, Si and Mn corresponded well with the deviation of corresponding oxide from equilibrium, reflecting the reasonability of the model. Besides that, the effects of Al in electrode as well as CaO, CaF2 and MgO in slag on the equilibrium slag, dissolved oxygen and surface tension were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Rückert, H. Pfeifer, Magnetohydrodynamics 45 (2009) 527–533.

    Article  Google Scholar 

  2. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, H. Poisson, Metall. Mater. Trans. B 40 (2009) 271–280.

    Article  Google Scholar 

  3. S.K. Maity, N.B. Ballal, G. Goldhahn, R. Kawalla, ISIJ Int. 49 (2009) 902–910.

    Article  Google Scholar 

  4. B. Hernandez-Morales, A. Mitchell, Ironmak. Steelmak. 26 (1999) 423–438.

    Article  Google Scholar 

  5. G. Hoyle, Electroslag processes: principles and practice, Applied Science Publishers, London, UK, 1983.

    Google Scholar 

  6. T.R. Bandyopadhyay, P.K. Rao, N. Prabhu, Metall. Min. Ind. 4 (2012) 6–16.

    Google Scholar 

  7. S.F. Medina, A. Cores, ISIJ Int. 33 (1993) 1244–1251.

    Article  Google Scholar 

  8. F. Reyes-Carmona, A. Mitchell, ISIJ Int. 32 (1992) 529–537.

    Article  Google Scholar 

  9. A. Mitchell, F. Reyes-Carmona, E. Samuelsson, Trans. ISIJ 24 (1984) 547–556.

    Article  Google Scholar 

  10. Z. Jiang, D. Hou, Y. Dong, Y. Cao, H. Cao, W. Gong, Metall. Mater. Trans. B 47 (2016) 1465–1474.

    Article  Google Scholar 

  11. D. Hou, Z. Jiang, Y. Dong, Y. Cao, H. Cao, W. Gong, Ironmak. Steelmak. 43 (2016) 517–525.

    Article  Google Scholar 

  12. M.E. Fraser, The loss of reactive elements during electroslag processing of iron-base alloys, The University of British Columbia, Vancouver, UK, 1974.

    Google Scholar 

  13. J. Zhang, Computational thermodynamics of metallurgical melts and solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  14. Z. Li , Electroslag metallurgy theory and practice, Metallurgical Industry Press, Beijing, China, 2011.

    Google Scholar 

  15. B.M. Patchett, D.R. Milner, Welding J. 51 (1972) 491-s–505-s.

  16. R.J. Hawkins, D.J. Swinden, D.N. Pocklington, Electroslag refining, The Iron and Steel Institute, London, UK, 1973.

    Google Scholar 

  17. J.A.V. Butler, Proc. R Soc. Lond. A 135 (1932) 348–375.

    Article  Google Scholar 

  18. The Japan Society for the Promotion of Science, Steelmaking data sourcebook, in: The 19th Committee on Steelmaking, Gordon and Breach Science Publishers, New York, USA, 1988.

  19. H. Suito, R. Inoue, ISIJ Int. 36 (1996) 528–536.

    Article  Google Scholar 

  20. J. Wei, A. Mitchell, Acta Metall. Sin. 20 (1984) B271–B273.

    Google Scholar 

  21. C.R. Taylor, J. Chipman, Trans. AIME 154 (1943) 228–246.

    Google Scholar 

  22. J. Zhang, W.X. Yuan, J. Univ. Sci. Technol. Beijing 17 (1995) 418–423.

    Google Scholar 

  23. J.X. Li, J. Zhang, J. Univ. Sci. Technol. Beijing 22 (2000) 316–319.

    Google Scholar 

  24. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, J.C. Wang, Metall. Mater. Trans. B 42 (2011) 738–770.

    Article  Google Scholar 

  25. X.M. Yang, CB. Shi, M. Zhang, G.M. Chai, F. Wang, Metall. Mater. Trans. B 42 (2011) 1150–1180.

    Article  Google Scholar 

  26. S.C. Duan, X.L. Guo, H.J. Guo, J. Guo, Ironmak. Steelmak. 44 (2017) 168–184.

    Article  Google Scholar 

  27. S.C. Duan, C. Li, X.L. Guo, H.J. Guo, J. Guo, W.S. Yang, Ironmak. Steelmak. 45 (2018) 655–664.

    Article  Google Scholar 

  28. V.D. Eisenhüttenleute, M. Allibert, Slag atlas, Woodhead Publishing Ltd., Düsseldorf, Germany, 1995.

    Google Scholar 

  29. M. Hanao, T. Tanaka, M. Kawamoto, K. Takatani, ISIJ Int. 47 (2007) 935–939.

    Article  Google Scholar 

  30. T. Tanaka, T. Kitamura, I.A. Back, ISIJ Int. 46 (2006) 400–406.

    Article  Google Scholar 

  31. J.Y. Choi, H.G. Lee, ISIJ Int. 42 (2002) 221–228.

    Article  Google Scholar 

  32. S. Li, G. Cheng, Z. Miao, L. Chen, C. Li, X. Jiang, ISIJ Int. 57 (2017) 2148–2156.

    Article  Google Scholar 

  33. M.E. Fraser, A. Mitchell, Ironmak. Steelmak. 3 (1976) 279–287.

    Google Scholar 

  34. S. Li, G. Cheng, L. Yang, L. Chen, Q. Yan, C. Li, AIST, Nashville, USA, 2017, pp. 1449–1457.

    Google Scholar 

  35. C.B. Shi, J. Li, J.W. Cho, F. Jiang, I.H. Jung, Metall. Mater. Trans. B 46 (2015) 2110–2120.

    Article  Google Scholar 

  36. J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1597–1606.

    Article  Google Scholar 

  37. J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1838–1847.

    Article  Google Scholar 

  38. J.Y. Choi, H.G. Lee, ISIJ Int. 43 (2003) 1348–1355.

    Article  Google Scholar 

  39. H. Abdeyazdan, B.J. Monaghan, R.J. Longbottom, M.A. Rhamdhani, N. Dogan, M.W. Chapman, Metall. Mater. Trans. B 48 (2017) 1970–1980.

    Article  Google Scholar 

  40. M. Sasabe, Y. Kinoshita, Tetsu-to-Hagané 65 (1979) 1727–1736.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Xining Special Steel Plant, China, as well as to the National Natural Science Foundation of China (Grant Nos. 51874034 and 51674024) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-guang Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Sj., Cheng, Gg., Huang, Y. et al. Mathematical model for design of optimized multi-component slag for electroslag remelting. J. Iron Steel Res. Int. 27, 380–391 (2020). https://doi.org/10.1007/s42243-020-00373-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00373-5

Keywords

Navigation