Skip to main content
Log in

End-point dynamic control of basic oxygen furnace steelmaking based on improved unconstrained twin support vector regression

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to improve the end-point hit rate of basic oxygen furnace steelmaking, a novel dynamic control model was proposed based on an improved twin support vector regression algorithm. The controlled objects were the end-point carbon content and temperature. The proposed control model was established by using the low carbon steel samples collected from a steel plant, which consists of two prediction models, a preprocess model, two regulation units, a controller and a basic oxygen furnace. The test results of 100 heats show that the prediction models can achieve a double hit rate of 90% within the error bound of 0.005 wt.% C and 15 °C. The preprocess model was used to predict an initial end-blow oxygen volume. However, the double hit rate of the carbon content and temperature only achieves 65%. Then, the oxygen volume and coolant additions were adjusted by the regulation units to improve the hit rate. Finally, the double hit rate after the regulation is reached up to 90%. The results indicate that the proposed dynamic control model is efficient to guide the real production for low carbon steel, and the modeling method is also suitable for the applications of other steel grades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Brämming, B. Björkman, C. Samuelsson, Steel Res. Int. 87 (2016) 301–310.

    Article  Google Scholar 

  2. Z. Wang, F.M. Xie, B. Wang, Q. Liu, X. Lu, L. Hu, F. Cai, Steel Res. Int. 85 (2014) 599–606.

    Article  Google Scholar 

  3. M. Han, C. Liu, Appl. Soft Comput. 19 (2014) 430–437.

    Article  Google Scholar 

  4. X.Z. Wang, M. Han, J. Wang, Eng. Appl. Artif. Intell. 23 (2010) 1012–1018.

    Article  Google Scholar 

  5. M. Han, Z.J. Cao, Neurocomputing 149 (2015) 1245–1252.

    Article  Google Scholar 

  6. L.X. Kong, P.D. Hodgson, D.C. Collinson, ISIJ Int. 38 (1998) 1121–1129.

    Article  Google Scholar 

  7. A.M.F. Fileti, T.A. Pacianotto, A.P. Cunha, Eng. Appl. Artif. Intell. 19 (2006) 9–17.

    Article  Google Scholar 

  8. J. Jiménez, J. Mochón, J.S. de Ayala, F. Obeso, ISIJ Int. 44 (2004) 573–580.

    Article  Google Scholar 

  9. C. Cortes, V. Vapnik, Mach. Learn. 20 (1995) 273–297.

    Google Scholar 

  10. Jayadeva, R. Khemchandani, S. Chandra, IEEE Trans. Pattern Anal. Machine Intell. 29 (2007) 905–910.

    Article  Google Scholar 

  11. X. Peng, Neural Netw. 23 (2010) 365–372.

    Article  Google Scholar 

  12. D. Gupta, Appl. Intell. 47 (2017) 962–991.

    Article  Google Scholar 

  13. R. Rastogi, P. Anand, S. Chandra, Appl. Intell. 46 (2017) 670–683.

    Article  Google Scholar 

  14. M. Tanveer, K. Shubham, M. Aldhaifallah, K.S. Nisar, Appl. Intell. 44 (2016) 831–848.

    Article  Google Scholar 

  15. Y. Xu, L. Wang, Appl. Intell. 41 (2014) 299–309.

    Article  Google Scholar 

  16. Y. Xu, X. Li, X. Pan, Z. Yang, Neural Comput. Appl. 30 (2018) 3799–3814.

    Article  Google Scholar 

  17. N. Parastalooi, A. Amiri, P. Aliheydari, Neurocomputing 211 (2016) 84–97.

    Article  Google Scholar 

  18. Y.F. Ye, L. Bai, X.Y. Hua, Y.H. Shao, Z. Wang, N.Y. Deng, Neurocomputing 197 (2016) 53–68.

    Article  Google Scholar 

  19. M.A. Kumar, M. Gopal, Pattern Recognit. Lett. 29 (2008) 1842–1848.

    Article  Google Scholar 

  20. Y.H. Shao, C.H. Zhang, Z.M. Yang, L. Jing, N.Y. Deng, Neural Comput. Appl. 23 (2013) 175–185.

    Article  Google Scholar 

  21. H. Huang, S. Ding, Z. Shi, J. Comput. Res. Dev. 52 (2015) 561–568.

    Google Scholar 

  22. C. Gao, M.G. Shen, Metalurgija 58 (2019) 29–32.

    Google Scholar 

  23. J. Shen, G. Strang, Appl. Comput. Harm. Anal. 5 (1998) 312–331.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Liaoning Province PhD Start-up Fund (No. 201601291) and Liaoning Province Ministry of Education Scientific Study Project (No. 2017LNQN11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-gang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Shen, Mg., Liu, Xp. et al. End-point dynamic control of basic oxygen furnace steelmaking based on improved unconstrained twin support vector regression. J. Iron Steel Res. Int. 27, 42–54 (2020). https://doi.org/10.1007/s42243-019-00348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00348-1

Keywords

Navigation