Skip to main content
Log in

End-point Prediction of BOF Steelmaking Based on KNNWTSVR and LWOA

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Basic oxygen furnace (BOF) steelmaking plays an important role in steelmaking process. Therefore, research on BOF steelmaking modeling is very necessary. In this paper, a novel combination prediction model has been proposed, which consists of a time series prediction model and a compensation prediction model. Both models are established by k-nearest neighbor-based weighted twin support vector regression (KNNWTSVR) algorithm. By introducing Lévy flight algorithm and inertia weight, an improved algorithm of whale optimization algorithm (WOA) called Lévy flight WOA has been initially proposed to solve the optimization problem in the objective function of KNNWTSVR. The simulation results show that the proposed models are effective and feasible. Within different error bounds (0.005% for carbon content model and 10 °C for temperature model), the strike rates of carbon content and temperature both achieve 93%, and a double strike rate of 86% is obtained, which can provide a significant reference for real BOF applications, and the proposed method is also appropriate for the prediction models of other metallurgical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brämming M, Björkman B, and Samuelsson C, Steel Res Int 87 (2016) 301.

    Article  Google Scholar 

  2. Wang Z, Xie F M, and Wang B, Steel Res Int 85 (2014) 599.

    Article  Google Scholar 

  3. Han M, and Liu C, Appl Soft Comp 19 (2014) 430.

    Article  Google Scholar 

  4. Wang X Z, Han M, and Wang J, Eng Appl Artif Intell 23 (2010) 1012.

    Article  Google Scholar 

  5. Han M, and Cao Z J, Neurocomputing 149 (2015) 1245.

    Article  Google Scholar 

  6. Kong L X, Hodgson P D, and Collinson D C, ISIJ Int 38 (1998) 1121.

    Article  Google Scholar 

  7. Frattini Fileti A M, Pacianotto T A, and Pitasse Cunha A, Eng Appl Artif Intell 19 (2006) 9.

    Article  Google Scholar 

  8. Jimenez J, Mochon J, and Ayala J S, ISIJ Int 44 (2004) 573.

    Article  Google Scholar 

  9. Jayadeva, Khemchandani R, and Chandra S, IEEE Trans on Pattern Anal Machine Intell 29 (2007) 905.

    Article  Google Scholar 

  10. Peng X, Neural Netw 23 (2010) 365.

    Article  Google Scholar 

  11. Gupta D, Appl Intell 47 (2017) 1–30.

    Article  Google Scholar 

  12. Xu Y and Wang L, Appl Intell 41 (2014) 299.

    Article  Google Scholar 

  13. Rastogi R, Anand P, and Chandra S, Appl Intell 46 (2016) 1.

    Google Scholar 

  14. Xu Y, Li X, and Pan X, Neural Comp Appl 2 (2017) 1.

    Google Scholar 

  15. Ye Y F, Bai L, and Hua X Y, Neurocomputing  197 (2016) 53.

    Article  Google Scholar 

  16. Tanveer M, Shubham K, and Aldhaifallah M, Appl Intell 44 (2016) 1.

    Article  Google Scholar 

  17. Parastalooi N, Amiri A, and Aliheydari P, Neurocomputing 211 (2016) 84.

    Article  Google Scholar 

  18. Khemchandani R, Goyal K, and Chandra S, Neural Netw 74 (2016) 14.

    Article  Google Scholar 

  19. Peng X, Chen D, and Kong L, Int J Mach Learn Cyber 6 (2015) 719.

    Article  Google Scholar 

  20. Tanveer M, and Shubham K, Int J Mach Learn Cyber 8 (2017) 807.

    Article  Google Scholar 

  21. Khemchandani R, Karpatne A, and Chandra S, Int J Mach Learn Cyber 4 (2013) 51.

    Article  Google Scholar 

  22. Mirjalili S, and Lewis A, Adv Eng Software 95 (2016) 51.

    Article  Google Scholar 

  23. Kennedy J, and Eberhart R, IEEE International Conference on Neural Networks (1995) p 1942.

  24. Marco D, Montes O M A, and Sabrina O, Comp Intell Mag IEEE 1 (2003) 28.

    Google Scholar 

  25. Pinto P C, Runkler T A, and Sousa J M C, International Conference on Adaptive and Natural Computing Algorithms (2007) pp 350–357.

  26. Yang X S, Int J Bio-Inspired Comp 2 (2010) 78.

    Article  Google Scholar 

  27. Pan W T, Knowledge-Based Syst 26 (2012) 69.

    Article  Google Scholar 

  28. Gandomi A H, and Alavi A H, Commun Nonlinear Sci Numer Simul 17 (2012) 4831.

    Article  Google Scholar 

  29. Askarzadeh A, and Rezazadeh A, Int J Energy Res 37 (2013) 1196.

    Article  Google Scholar 

  30. Kaveh A, and Farhoudi N, Adv Eng Software 59 (2013) 53.

    Article  Google Scholar 

  31. Mehrdad G, Zahra Z, and Yazdan A, Physicia A 388 (2009) 1509.

    Article  Google Scholar 

  32. Yang X S, and Deb S, Int J Math Modelling Numer Opt 1 (2010) 330.

    Google Scholar 

  33. Shi Y, and Eberhart R, Proc. of IEEE ICEC conference (1998) p 69.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61403177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minggang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Shen, M., Liu, X. et al. End-point Prediction of BOF Steelmaking Based on KNNWTSVR and LWOA. Trans Indian Inst Met 72, 257–270 (2019). https://doi.org/10.1007/s12666-018-1479-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1479-5

Keywords

Navigation