Skip to main content
Log in

Effect of annealing treatment on microstructure and mechanical properties of Al/Ni multilayer composites during accumulative roll bonding (ARB) process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Al/Ni multilayer composites are produced by accumulative roll bonding process and then annealed with different temperatures and time. Macroscopic images, microstructure and mechanical properties of Al/Ni multilayer composites are investigated. As for the macroscopic images, although there was an edge crack along the rolling direction at the third pass, the defect of composites was not serious and the forming quality of composites was relatively good. The yield strength and elongation of Al/Ni multilayer composites are improved after the annealing treatment; however, with the increase in annealing temperature and time, the yield strength and elongation of Al/Ni multilayer composites are decreased. During the process of annealing treatment, aluminum atoms diffuse in the way of vacancy diffusion, which results in the formation of Al3Ni intermetallic phase at Al/Ni interface and Kirkendall void in the aluminum side. The content of Al3Ni intermetallic phase and Kirkendall void would increase with the increase in annealing temperature and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.G. Guo, X.M. Li, H.R. Li, D.X. Zhang, C. Lai, W.L. Li, Surf. Coat. Technol. 265 (2015) 83–93.

    Article  Google Scholar 

  2. F. Peng, D.Q. Yu, S.Q. Yang, J.P. Jiang, J. Lou, W.M. Wang, Chin. J. Energy Mater. 19 (2011) 450–453.

    Google Scholar 

  3. Z.H. Lu, W.X. Sun, Z.H. Luo, H.J. Huang, J.P. Jiang, S.Q. Yang, Sci. Technol. Rev. 31 (2013) No. 17, 46–50.

    Google Scholar 

  4. K. Morsi, J. Mater. Sci. 47 (2012) 68–92.

    Article  Google Scholar 

  5. C.T. Wei, E. Vitali, F Jiang, S.W. Du, D.J. Benson, K.S. Vecchio, N.N. Thadhani, M.A. Meyers, Acta Mater. 60 (2012) 1418–1432.

    Article  Google Scholar 

  6. W. Xiong, X.F. Zhang, Y. Wu, Y. He, C.T. Wang, L. Guo, J. Alloy. Compd. 648 (2015) 540–549.

    Article  Google Scholar 

  7. D.B. Zhang, T. Wang, Y.H. Yu, J.F. Pan, W. Wang, Chinese Journal of Rare Metals 41 (2017) 40–44.

    Google Scholar 

  8. K. Brunelli, L. Peruzzo, M. Dabalà, Mater. Chem. Phys. 149–150 (2015) 350–358.

    Article  Google Scholar 

  9. G.H. Min, J.M. Lee, S.B. Kang, H.W. Kim, Mater. Lett. 60 (2006) 3255–3259.

    Article  Google Scholar 

  10. A. Mozaffari, H.D. Manesh, K. Janghorban, J. Alloy. Compd. 489 (2010) 103–109.

    Article  Google Scholar 

  11. A. Mozaffari, M. Hosseini, H.D. Manesh, J. Alloy. Compd. 509 (2011) 9938–9945.

    Article  Google Scholar 

  12. M. Reihanian, M. Naseri, Mater. Des. 89 (2016) 1213–1222.

    Article  Google Scholar 

  13. Y.Q. Wang, X.P. Ren, B.W. Wang, H.L. Hou, Chinese Journal of Rare Metals 36 (2012) 830–834.

    Google Scholar 

  14. V.Y. Mehr, M.R. Toroghinejad, A. Rezaeian, Mater. Sci. Eng. A 601 (2014) 40–47.

    Article  Google Scholar 

  15. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, M.Y. Zheng, Mater. Sci. Eng. A 527 (2010) 3073–3078.

    Article  Google Scholar 

  16. M.J. Li, X.L. Liu, Y.T. Liu, M.Y. Zheng, C. Wang, D.F. Chen, Acta Metall. Sin. 52 (2016) 463–472.

    Google Scholar 

  17. H. Chang, M.Y. Zheng, W.M. Gang, C. Xu, H.G. Brokmeier, Rare Met. Mater. Eng. 42 (2013) 441–446.

    Article  Google Scholar 

  18. C. Ji, Y. He, C.T. Wang, Y. He, X.H. Pan, J.J. Jiao, L. Guo, Mater. Des. 116 (2017) 591–598.

    Article  Google Scholar 

  19. V.C. Srivastava, S.G. Chowdhury, V. Jindal, J. Mater. Eng. Perform. 21 (2012) 1912–1918.

    Article  Google Scholar 

  20. G.X. Hu, X. Cai, Y.H. Rong, Fundamentals of materials science, 3rd ed., Shanghai Jiao Tong University Press, Shanghai, China, 2000.

    Google Scholar 

  21. P.F. Thomason, G. Rauchs, P.J. Withers, Acta Mater. 50 (2002) 1453–1466.

    Article  Google Scholar 

  22. X. Sauvage, G.P. Dinda, G. Wilde, Scripta Mater. 56 (2007) 181–184.

    Article  Google Scholar 

  23. X.L. Hu, R.B. Feng, Z.P. Wang, P. Jia, Z.H. Ji, Chinese Journal of Rare Metals 23 (2009) 526–529.

    Google Scholar 

  24. R. Zhang, V.L. Acoff, Mater. Sci. Eng. A 463 (2007) 67–73.

    Article  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the National Natural Science Foundation of China (NSFC 51605307), and the Scientific Research Foundation of the Education Department of Liaoning Province, China (LGD2016020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zheng or Run-xia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Hw., Yu, By., Zhang, H. et al. Effect of annealing treatment on microstructure and mechanical properties of Al/Ni multilayer composites during accumulative roll bonding (ARB) process. J. Iron Steel Res. Int. 27, 96–104 (2020). https://doi.org/10.1007/s42243-019-00344-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00344-5

Keywords

Navigation