Skip to main content
Log in

Multistage serrated flow behavior of a medium-manganese high-carbon steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The deformation mechanisms and the flow stress behavior of a medium-manganese high-carbon steel during cold deformation at a strain rate of 10−5 s−1 were explored using a universal testing machine, an X-ray diffractometer, a field emission scanning electron microscope and a high-resolution transmission electron microscope. The results show that continuous step-up serrated flow behavior appears after the yielding point, and the true stress–strain curve is roughly divided into five stages based on distinctive densities and amplitudes of serration. The strengthening mechanisms of the experimental steel involve Cottrell atmosphere, twinning-induced plasticity (TWIP) effect and transformation-induced plasticity (TRIP) effect. TWIP effect is the dominant deformation mechanism, and deformation twins formed by TWIP effect comprise primary, secondary and nanotwins. Furthermore, TRIP effect arises in the local high-strain region. Carbon element plays a key role in the transformation of the deformation mechanism. A small amount of carbide precipitates around twin boundaries lead to the formation of local carbon-poor regions, and Md temperature and stacking fault energy of medium-manganese high-carbon steel are propitious to the occurrence of TRIP effect. In addition, the contributions of various deformation mechanisms to plasticity are calculated, and that of TWIP effect is the greatest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, Y.Z. Tian, Z.F. Zhang, Acta Mater. 145 (2018) 413-428.

    Google Scholar 

  2. S.G. Peng, R.B. Song, Z.D. Tan, C.H. Cai, K. Guo, Z.H. Wang, J. Iron Steel Res. Int. 23 (2016) 857–866.

    Google Scholar 

  3. F. Berrenberg, J. Wang, I. Timokhina, C. Haase, R. Lapovok, D.A. Molodov, Mater. Sci. Eng. A 709 (2018) 172–180.

    Google Scholar 

  4. E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 128 (2017) 120–134.

    Google Scholar 

  5. C.W. Shao, Q. Wang, P. Zhang, Y.K. Zhu, Z.K. Zhao, X.G. Wang, Z.F. Zhang, Mater. Sci. Eng. A 740-741 (2019) 28–33.

    Google Scholar 

  6. L. Mujica Roncery, L. Agudo Jácome, A. Aghajani, W. Theisen, S. Weber, Wear 402-403 (2018) 137–147.

    Google Scholar 

  7. E. Husser, S. Bargmann, J. Mech. Phys. Solids 122 (2019) 315–339.

    MathSciNet  Google Scholar 

  8. X.F. Zhang, H. Yang, D.P. Leng, L. Zhang, Z.Y. Huang, G. Chen, J. Iron Steel Res. Int. 23 (2016) 963–972.

    Google Scholar 

  9. Y. Zeng, X. Cai, M. Koslowski, Acta Mater. 164 (2019) 1–11.

    Google Scholar 

  10. C.L. Zhuang, J.H. Liu, J. Iron Steel Res. Int. 25 (2018) 546–553.

    Google Scholar 

  11. Y.K. Lee, Scripta Mater. 66 (2012) 1002–1006.

    Google Scholar 

  12. S.J. Lee, H. Fujii, K. Ushioda, J. Alloy. Compd. 749 (2018) 776–782.

    Google Scholar 

  13. T. Niendorf, C.J. Rüsing, A. Frehn, Y.I. Chumlyakov, H.J. Maier, Scripta Mater. 67 (2012) 875–878.

    Google Scholar 

  14. E. Welsch, D. Ponge, S.M. Hafez Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, D. Raabe, Acta Mater. 116 (2016) 188–199.

    Google Scholar 

  15. J.H. Kang, T. Ingendahl, W. Bleck, Mater. Des. 90 (2016) 340–349.

    Google Scholar 

  16. J.E. Jung, J. Park, J.S. Kim, J.B. Jeon, S.K. Kim, Y.W. Chang, Met. Mater. Int. 20 (2014) 27–34.

    Google Scholar 

  17. B.B. He, H.W. Luo, M.X. Huang, Int. J. Plast. 78 (2016) 173–186.

    Google Scholar 

  18. S. Lu, R. Li, K. Kádas, H. Zhang, Y. Tian, S.K. Kwon, K. Kokko, Q.M. Hu, S. Hertzman, L. Vitos, Acta Mater. 122 (2017) 72–81.

    Google Scholar 

  19. R.E. Schramm, R.P. Reed, Metall. Trans. A 6 (1975) 1345–1351.

    Google Scholar 

  20. J.W. Qiao, Z. Wang, J. Iron Steel Res. Int. 23 (2016) 7–13.

    Google Scholar 

  21. L.S. Huo, J.Q. Wang, J.T. Huo, Y.Y. Zhao, H. Men, C.T. Chang, X.M. Wang, R.W. Li, J. Iron Steel Res. Int. 23 (2016) 48–52.

    Google Scholar 

  22. Z.Y. Liu, Y. Yang, C.T. Liu, J. Iron Steel Res. Int. 23 (2016) 53–56.

    Google Scholar 

  23. W. Woo, J. Kim, E.Y. Kim, S.H. Choi, V. Em, D.S. Hussey, Scripta Mater. 158 (2019) 105–109.

    Google Scholar 

  24. S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129–5141.

    Google Scholar 

  25. S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A 711 (2018) 22–28.

    Google Scholar 

  26. R.G.A. Veiga, H. Goldenstein, M. Perez, C.S. Becquart, Scripta Mater. 108 (2015) 19–22.

    Google Scholar 

  27. O. Waseda, R.G.A. Veiga, J. Morthomas, P. Chantrenne, C.S. Becquart, F. Ribeiro, A. Jelea, H. Goldenstein, M. Perez, Scripta Mater. 129 (2017) 16–19.

    Google Scholar 

  28. F. Berrenberg, C. Haase, L.A. BarralesMora, D.A. Molodov, Mater. Sci. Eng. A 681 (2017) 56–64.

    Google Scholar 

  29. A.V. Korchuganov, A.N. Tyumentsev, K.P. Zolnikov, I.Y. Litovchenko, D.S. Kryzhevich, E. Gutmanas, S. Li, Z. Wang, S.G. Psakhie, J. Mater. Sci. Technol. 35 (2019) 201–206.

    Google Scholar 

  30. S.Q. Zhu, S.P. Ringer, Acta Mater. 144 (2018) 365–375.

    Google Scholar 

  31. B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283–362.

    Google Scholar 

  32. C. Liu, P. Shanthraj, M. Diehl, F. Roters, S. Dong, J. Dong, W. Ding, D. Raabe, Int. J. Plast. 106 (2018) 203–227.

    Google Scholar 

  33. G. Casillas, A.A. Gazder, E.V. Pereloma, A.A. Saleh, Mater. Charact. 123 (2017) 275–281.

    Google Scholar 

  34. S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metall. Mater. Trans. 47 (2016) 49–58.

    Google Scholar 

  35. K. Wang, A. Wei, X. Tong, J. Lin, L. Jin, X. Zhong, D. Wang, Mater. Lett. 211 (2018) 118–121.

    Google Scholar 

  36. Z. Zhang, L. Li, Z. Zhang, P. Zhang, J. Mater. Sci. Technol. 33 (2017) 603–606.

    Google Scholar 

  37. Z. Wu, C.M. Parish, H. Bei, J. Alloy. Compd. 647 (2015) 815–822.

    Google Scholar 

  38. M.J. Lai, Y.J. Li, L. Lillpopp, D. Ponge, S. Will, D. Raabe, Acta Mater. 155 (2018) 222–235.

    Google Scholar 

  39. H. Zhang, K. Chong, G. Xiao, Z. Sun, W. Zhao, Surf. Coat. Technol. 352 (2018) 222–230.

    Google Scholar 

  40. C. Leinenbach, A. ArabiHashemi, W.J. Lee, A. Lis, M. SadeghAhmadi, S. Van Petegem, T. Panzner, H. Van Swygenhoven, Mater. Sci. Eng. A 703 (2017) 314–323.

    Google Scholar 

  41. J. Lu, L. Hultman, E. Holmström, K.H. Antonsson, M. Grehk, W. Li, L. Vitos, A. Golpayegani, Acta Mater. 111 (2016) 39–46.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support by the National Natural Science Foundation of China (Grant Nos. U1860201 and U1960115) and the Basic Research Program of Key Laboratory of Liaoning Province (LZ2015035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.J. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, Y., Wang, J. et al. Multistage serrated flow behavior of a medium-manganese high-carbon steel. J. Iron Steel Res. Int. 27, 1064–1072 (2020). https://doi.org/10.1007/s42243-019-00343-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00343-6

Keywords

Navigation