Skip to main content
Log in

Effects of Zr addition on microstructure and toughness of simulated CGHAZ in high-strength low-alloy steels

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of Zr addition (0.005, 0.013, and 0.054 wt.%) on the microstructure and toughness of simulated coarse-grained heat-affected zone in high-strength low-alloy steels was revealed using a Gleeble 2000 thermal simulator. It was observed that elongated MnS inclusions were formed in the lowest Zr-containing steel, while only pure equiaxed ZrO2 existed in the 0.054Zr steel (Zr content of 0.054 wt.%). Complex oxide–sulfide inclusions (ZrO2 + MnS) with size of (1.40 ± 0.25) μm were formed in 0.013Zr steel (Zr content of 0.013 wt.%). The complex inclusions refined the prior austenite grain, and the nucleation of acicular ferrite was promoted compared to those of 0.005Zr steel (Zr content of 0.005 wt.%) and 0.054Zr steel. Consequently, the 0.013Zr steel possessed superior low-temperature impact toughness in relation to 0.005Zr and 0.054Zr steels. Thus, moderate Zr addition can be considered as an effective method to refine the structure and improve the mechanical properties of the coarse-grained heat-affected zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Hwang, Y.G. Kim, S. Lee, Y.M. Kim, N.J. Kim, J.Y. Yoo, Metall. Mater. Trans. A 36(2005) 2107–2114.

    Article  Google Scholar 

  2. X.L. Wan, K.M. Wu, H.H. Wang, W.Y. Lu, L. Cheng, China Welding 23 (2014) No. 4, 56–62.

    Google Scholar 

  3. K.M. Wu, Z.G. Li, A.M. Guo, X.L. He, L.Q. Zhang, A.H. Fang, L. Cheng, ISIJ Int. 46 (2006) 161–165.

    Article  Google Scholar 

  4. X.L. Wan, K.M. Wu, L. Cheng, R. Wei, ISIJ Int. 55 (2015) 679–685.

    Article  Google Scholar 

  5. Z.M. Cui, L.G. Zhu, Y.L. Li, Q.J. Zhang, C.L. Yan, W.L. Mo, J. Iron Steel Res. Int. 23 (2016) 586–592.

    Article  Google Scholar 

  6. A.S. Kumar, B.R. Kumar, G.L. Datta, V.R. Rangganath, Mater. Sci. Eng. A 527 (2010) 954–960.

    Article  Google Scholar 

  7. Y. Liu, G.Q. Li, X.L. Wan, H.H. Wang, K.M. Wu, R.D.K. Misra, Mater. Sci. Technol. 33 (2017) 1750–1764.

    Article  Google Scholar 

  8. M.H. Shi, P.Y. Zhang, F.X. Zhu, ISIJ Int. 54 (2014) 188–192.

    Article  Google Scholar 

  9. Y. Ci, Z.Z. Zhang. J. Iron Steel Res. Int. 24 (2017) 966–972.

    Article  Google Scholar 

  10. Y. Li, X.L. Wan, L. Cheng, K.M. Wu, Scripta Mater. 75 (2014) 78–81.

    Article  Google Scholar 

  11. X.L. Wan, K.M. Wu, G. Huang, K.C. Nune, Y. Li, L. Cheng, Sci. Technol. Weld. Join. 21 (2016) 295–302.

    Article  Google Scholar 

  12. M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, N. Rahimi, Micron 45 (2013) 107–114.

    Article  Google Scholar 

  13. S. Shanmugan, R.D.K. Misra, J. Hartmann, S.G. Jansto, Mater. Sci. Eng. A 441 (2006) 215–229.

    Article  Google Scholar 

  14. P. Cizek, B.P. Wynne, C.H.J. Davies, P.D. Hodgson, Metall. Mater. Trans. A 46 (2015) 407–425.

    Article  Google Scholar 

  15. W.J. Hui, N. Xiao, X.L. Zhao, Y.J. Zhang, Y.F. Wu, J. Iron Steel Res. Int. 24 (2017) 641–648.

    Article  Google Scholar 

  16. C. Wang, R.D.K. Misra, M.H. Shi, P.Y. Zhang, Z.D. Wang, F.X. Zhu, G.D. Wang, Mater. Sci. Eng. A 594 (2014) 218–228.

    Article  Google Scholar 

  17. N.N. Rykalin, Calculation of heat transactions during welding, VEB Verlag Technik, Berlin, Germany, 1957.

    Google Scholar 

  18. A.F. Gourgues, H.M. Flower, T.C. Lindley, Mater. Sci. Technol. 16 (2000) 26–40.

    Article  Google Scholar 

  19. J.L. Lee, Y.T. Pan, Mater. Sci. Eng. A 136 (1991) 109–119.

    Article  Google Scholar 

  20. H. Goto, K.I. Miyazawa, T. Kazuaki, ISIJ Int. 35 (1995) 286–291.

    Article  Google Scholar 

  21. Y. Li, X.L. Wan, W.Y. Lu, A.A. Shirzadi, O. Isayev, O. Hress, K.M. Wu, Mater. Sci. Eng. A 659 (2016) 179–187.

    Article  Google Scholar 

  22. A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, X.L. He, Mater. Charact. 59 (2008) 134–139.

    Article  Google Scholar 

  23. X.H. Huang, Principle of steel metallurgy, 4rd ed., Metallurgical Industry Press, Beijing, China, 2013.

    Google Scholar 

  24. O.I. Malyi, Z. Chen, G.G. Shu, P. Wu, J. Mater. Chem. 21 (2011) 12363–12368.

    Article  Google Scholar 

  25. B. Beidokhti, A.H. Koukabi, A. Dolati, J. Mater. Process. Technol. 209 (2009) 4027–4036.

    Article  Google Scholar 

  26. H. Mabuchi, R. Uemori, M. Fujioka, ISIJ Int. 36 (1996) 1406–1412.

    Article  Google Scholar 

  27. T. Sawai, M. Wakoh, Y. Usehima, S. Mizoguchi, ISIJ Int. 32 (1992) 169–173.

    Article  Google Scholar 

  28. Y. Li, X.L. Wan, L. Cheng, K.M. Wu, Mater. Sci. Technol. 32 (2016) 88–93.

    Article  Google Scholar 

  29. D.S. Sarma, A.V. Karasev, P.G. Jönsson, ISIJ Int. 49 (2009) 1063–1074.

    Article  Google Scholar 

  30. Ø. Grong, L. Kolbeinsen, C. van der Eijk, G. Tranell, ISIJ Int. 46 (2006) 824–831.

    Article  Google Scholar 

  31. F.J. Barbaro, P. Kraukalis, K.E. Easterling, Mater. Sci. Technol. 5 (1989) 1057–1068.

    Article  Google Scholar 

  32. K.Y. Park, S.W. Hwang, J.H. Ji, C.H. Lee, Met. Mater. Int. 17 (2010) 349–356.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51671149), Wuhan Science and Technology Program (Grant No. 2019010701011382), Major Technology Innovation of Hubei Province (2016AAA022) and 111 Project. R.D.K. Misra gratefully acknowledges continued collaboration with WUST as Guest Professor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-ming Wu or Ting-ping Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Jw., Wu, Km., Li, Y. et al. Effects of Zr addition on microstructure and toughness of simulated CGHAZ in high-strength low-alloy steels. J. Iron Steel Res. Int. 26, 1117–1125 (2019). https://doi.org/10.1007/s42243-019-00319-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00319-6

Keywords

Navigation