Skip to main content
Log in

Effect of welding heat input on microstructure and impact toughness in CGHAZ of X100Q steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The coarse-grained heat-affected zones (CGHAZs) of X100Q steel were reproduced via simulating their welding thermal cycles with the varying heat input (Ej) from 10 to 55 kJ/cm in Gleeble3500 system. The microstructures were characterized, and the impact toughness was estimated from each simulated sample. The results indicate that the microstructure in each simulated CGHAZ was primarily constituted of lath-like bainite. With the decreased heat input and accordingly the lowered Ar3 (the onset temperature for this transition), the prior austenite grain and the bainitic packet/block/lath substructure were refined remarkably, and the impact toughness was enhanced due to the microstructure refinement. The bainitic packet was the microstructural unit most effectively controlling the impact properties in CGHAZ of X100Q steel, due to their close correlation with the 50% fracture appearance transition temperatures, their size equivalent to the cleavage facet and their boundaries impeding the crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.Y. Shin, B. Hwang, S. Lee, N.J. Kim, S.S. Ahn, Mater. Sci. Eng. A 458 (2007) 281–289.

    Article  Google Scholar 

  2. W.G. Zhao, W. Wang, S.H. Chen, J.B. Qu, Mater. Sci. Eng. A 528 (2011) 7417–7422.

    Article  Google Scholar 

  3. C.L. Davis, J.E. King, Metall. Mater. Trans. A 25 (1994) 563–573.

    Article  Google Scholar 

  4. C. Ouchi, ISIJ Int. 41 (2001) 542–553.

    Article  Google Scholar 

  5. J. Chen, S. Tang, Z.Y. Liu, G.D. Wang, Mater. Sci. Eng. A 559 (2013) 241–249.

    Article  Google Scholar 

  6. J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, R.D.K. Misra, Mater. Sci. Eng. A 585 (2013) 197–204.

    Article  Google Scholar 

  7. P.C.M. Rodrigues, E.V. Pereloma, D.B. Santos, Mater. Sci. Eng. A 283 (2000) 136–143.

    Article  Google Scholar 

  8. D.S. Liu, B.G. Cheng, Y.Y. Chen, Metall. Mater. Trans. A 44 (2013) 440–455.

    Article  Google Scholar 

  9. S.C. Wang, P.W. Kao, J. Mater. Sci. 28 (1993) 5169–5175.

    Article  Google Scholar 

  10. R. Feng, S.L. Li, Z.S. Li, L. Tian, Mater. Sci. Eng. A 558 (2012) 205–210.

    Article  Google Scholar 

  11. E. Bonnevie, G. Ferrière, A. Ikhlef, D. Kaplan, J.M. Orain, Mater. Sci. Eng. A 385 (2004) 352–358.

    Article  Google Scholar 

  12. S.M. Zhang, K. Liu, H. Chen, X.P. Xiao, Q.F. Wang, F.C. Zhang, Mater. Sci. Eng. A 651 (2016) 951–960.

    Article  Google Scholar 

  13. Y.L. Kang, Q.H. Han, X.M. Zhao, M.H. Cai, Mater. Des. 44 (2013) 331–339.

    Article  Google Scholar 

  14. J. Hu, L.X. Du, J.J. Wang, C.R. Gao, Mater. Sci. Eng. A 577 (2013) 161–168.

    Article  Google Scholar 

  15. Z. Gao, R. Wei, K.M. Wu, Adv. Mater. Res. 538–541 (2012) 2026–2031.

    Article  Google Scholar 

  16. R.T. Li, X.R. Zuo, Y.Y. Hu, Z.W. Wang, D.X. Hu, Mater. Charact. 62 (2011) 801–806.

    Article  Google Scholar 

  17. A. Lambert-Perlade, A.F. Gourgues, A. Pineau, Acta Mater. 52 (2004) 2337–2348.

    Article  Google Scholar 

  18. A.M. Guo, R.D.K. Misra, J.B. Liu, L. Chen, X.L. He, S.J. Jansto, Mater. Sci. Eng. A 527 (2010) 6440–6448.

    Article  Google Scholar 

  19. Y. You, C.J. Shang, L. Chen, S. Subramanian, Mater. Des. 43 (2013) 485–491.

    Article  Google Scholar 

  20. H.K. Sung, S.Y. Shin, W. Cha, K. Oh, S. Lee, N.J. Kim, Mater. Sci. Eng. A 528 (2011) 3350–3357.

    Article  Google Scholar 

  21. Z.X. Zhu, M. Marimuthu, L. Kuzmikova, H.J. Li, F. Barbaro, L. Zheng, M.Z. Bai, C. Jones, Sci. Technol. Weld. Join. 18 (2013) 45–51.

    Article  Google Scholar 

  22. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51 (2003) 1789–1799.

    Article  Google Scholar 

  23. C. Garcia-Mateo, L. Morales-Rivas, F.G. Caballero, D. Milbourn, T. Sourmail, Metals 6 (2016) 130.

    Article  Google Scholar 

  24. H.J. Hu, G. Xu, M.X. Zhou, Q. Yuan, Metals 6 (2016) 173.

    Article  Google Scholar 

  25. S. Lee, B.C. Kim, D.Y. Lee, Scripta Metall. 23 (1989) 995–1000.

    Article  Google Scholar 

  26. Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim, ISIJ Int. 42 (2002) 1571–1577.

    Article  Google Scholar 

  27. J. Nohava, P. Haušild, M. Karlik, P. Bompard, Mater. Charact. 49 (2002) 211–217.

  28. Y. You, C.J. Shang, W.J. Nie, S. Subramanian, Mater. Sci. Eng. A 558 (2012) 692–701.

    Article  Google Scholar 

  29. C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, K.M. Sun, Mater. Sci. Eng. A 534 (2012) 339–346.

    Article  Google Scholar 

  30. F.J. Barbaro, Z. Zhu, L. Kuzmikova, H. Li, J.M. Gray, in: 2nd International Symposium on Nb and Mo Alloying in High Performance Steels, Shanghai, China, 2013, pp. 1–13.

    Google Scholar 

  31. X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, S.V. Subramanian, Mater. Sci. Eng. A 704 (2017) 448–458.

    Article  Google Scholar 

  32. H.K.D.H. Bhadeshia, J.W. Christian, Metall. Trans. A 21 (1990) 767–797.

    Article  Google Scholar 

  33. C.W. Li, Y. Wang, T. Han, B. Han, L.Y. Li, J. Mater. Sci. 46 (2011) 727–733.

    Article  Google Scholar 

  34. S. Moeinifar, A.H. Kokabi, H.R. Madaah Hosseini, Mater. Des. 31 (2010) 2948–2955.

  35. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann, S.G. Jansto, Mater. Sci. Eng. A 478 (2008) 26–37.

    Article  Google Scholar 

  36. T. Furuhara, H. Kawata, S. Morito, T. Maki, Mater. Sci. Eng. A 431 (2006) 228–236.

    Article  Google Scholar 

  37. H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 273–275 (1999) 58–66.

    Article  Google Scholar 

  38. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.X. Du, Mater. Sci. Eng. A 529 (2011) 192–200.

    Article  Google Scholar 

  39. J. Daigne, M. Guttmann, J.P. Naylor, Mater. Sci. Eng. 56 (1982) 1–10.

    Article  Google Scholar 

  40. I.A. Yakubtsov, P. Poruks, J.D. Boyd, Mater. Sci. Eng. A 480 (2008) 109–116.

    Article  Google Scholar 

  41. Y. Fukada, Y. Komizo, Trans. Jpn. Weld. Soc. 23 (1992) 3–10.

    Google Scholar 

  42. H. Terasaki, Y. Shintome, A. Takada, Y. Komizo, K. Moriguchi, Y. Tomio, Metall. Mater. Trans. A 45 (2014) 3554–3559.

    Article  Google Scholar 

  43. M. Olasolo, P. Uranga, J.M. Rodriguez-Ibabe, B. López, Mater. Sci. Eng. A 528 (2011) 2559–2569.

    Article  Google Scholar 

  44. M.C. Zhao, K. Yang, F.R. Xiao, Y.Y. Shan, Mater. Sci. Eng. A 355 (2003) 126–136.

    Article  Google Scholar 

  45. S.C. Wang, J.R. Yang, Mater. Sci. Eng. A 154 (1992) 43–49.

    Article  Google Scholar 

  46. J.P. Naylor, P.R. Krahe, Metall. Trans. A 6 (1975) 594.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Tianjin New Materials Science and Technology Major Project (Grant No. 16ZXCLGX00150), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-feng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hb., Wang, Fl., Shi, Gh. et al. Effect of welding heat input on microstructure and impact toughness in CGHAZ of X100Q steel. J. Iron Steel Res. Int. 26, 637–646 (2019). https://doi.org/10.1007/s42243-019-00271-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00271-5

Keywords

Navigation