Skip to main content
Log in

Interface reaction of high-strength low-alloy steel with Al–43.4Zn–1.6Si (wt.%) metallic coating

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructure, elemental distribution, phase composition, and thickness of intermetallic layers between high-strength low-alloy steel (H420)/mild carbon steel (DC51) and Al–43.4Zn–1.6Si (wt.%) (galvalume, GL) alloy were comparatively investigated. The experimental results reveal that the interfacial reaction layer was composed of Fe2Al5, Fe4Al13, and Al8Fe2Si intermetallic compounds. Moreover, the growth curves of the Fe2Al5 and Fe4Al13 intermetallic layers fit the parabolic law well, and the total thickness of the intermetallic layers of H420 + GL was almost the same as that of DC51 + GL. However, the thickness of the Fe2Al5 layer in H420 + GL was thinner than that in DC51 + GL. In addition, first-principle calculations were performed to explore the effect of Mn on the growth of the Fe2Al5 intermetallic phase, and the results indicate that Mn substitution in Fe2Al5 removes electronic charge from the Al atoms, thus decreasing the thickness of the Fe2Al5 interface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B.J. Xu, Nucleation and growth of 55% Al–Zn alloy on steel substrate, University of Wollongong, Wollongong, Australia, 2005.

  2. N. Takata, M. Nishimoto, S. Kobayashi, M. Takeyama, Intermetallics 67 (2015) 1–11.

    Article  Google Scholar 

  3. H. Shahverdi, M. Ghomashchi, S. Shabestari, J. Hejazi, J. Mater. Process. Tech. 124 (2002) 345–352.

    Article  Google Scholar 

  4. Y. Han, C. Ban, Q. Ba, S.J. Guo, S.H. Wang, J.Z. Cui, Mater. Lett. 60 (2006) 1884–1887.

    Article  Google Scholar 

  5. A. Bouayad, C. Gerometta, A. Belkebir, A. Ambari, Mater. Sci. Eng. A 363 (2003) 53–61.

    Article  Google Scholar 

  6. K.A. Nazari, S.G. Shabestari, J. Alloy. Compd. 478 (2009) 523–530.

    Article  Google Scholar 

  7. W.J. Cheng, C.J. Wang, Mater. Charact. 61 (2010) 467–473.

    Article  Google Scholar 

  8. H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, G. Eggeler, Acta Mater. 59 (2011) 1586–1600.

    Article  Google Scholar 

  9. W.M. Jiang, Z.T. Fan, G.Y. Li, L. Chi, J. Alloy. Compd. 678 (2016) 249–257.

    Article  Google Scholar 

  10. W.M. Jiang, Z.T. Fan, G.Y. Li, X.W. Liu, F.C. Liu, J. Alloy. Compd. 688 (2016) 742–751.

    Article  Google Scholar 

  11. D. Phelan, B.J. Xu, R. Dippenar, Mater. Sci. Eng. A 420 (2006) 144–149.

    Article  Google Scholar 

  12. H.P. Peng, X.P. Su, Z. Li, J.H. Wang, C.J. Wu, H. Tu, X.F. Lai, Surf. Coat. Technol. 206 (2012) 4329–4334.

    Article  Google Scholar 

  13. J.H. Selverian, A.R. Marder, M.R. Notis, Metall. Trans. A 19 (1988) 1193–1203.

    Article  Google Scholar 

  14. T.N. Vu, P. Volovitch, K. Ogle, Corros. Sci. 67 (2013) 42–49.

    Article  Google Scholar 

  15. G.X. Wu, J.Y. Zhang, Y.L. Ren, G.Y. Li, X.C. Wu, Q. Li, K.C. Chou, Metall. Mater. Trans. A 43 (2012) 2012–2017.

    Article  Google Scholar 

  16. G.X. Wu, J.Y. Zhang, Q. Li, K.C. Chou, X.C. Wu, Metall. Mater. Trans. B 43 (2012) 198–205.

    Article  Google Scholar 

  17. J. Lee, J. Park, S.H. Jeon, Metall. Mater. Trans. B 42 (2011) 1086–1089.

    Article  Google Scholar 

  18. M. Blumenau, M. Norden, F. Friedel, K. Peters, Surf. Coat. Technol. 205 (2011) 3319–3327.

    Article  Google Scholar 

  19. E.M. Bellhouse, A. Mertens, J.R. McDermid, Mater. Sci. Eng. A 463 (2007) 147–156.

    Article  Google Scholar 

  20. Z. Li, Research on the silicon reactivity and the influence of alloy elements on the hot-dip galvanizing, Central South University, Changsha, China, 2008.

  21. S. Shimada, Y. Takada, J. Lee, T. Tanaka, ISIJ Int. 48 (2008) 1246–1250.

    Article  Google Scholar 

  22. Y. Takada, S. Shimada, J. Lee, M. Kurosaki, T. Tanaka, ISIJ Int. 49 (2009) 100–104.

    Article  Google Scholar 

  23. X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim, Y.M. Kim, Scripta Mater. 57 (2007) 113–116.

    Article  Google Scholar 

  24. A. Ollivier-Leduc, M.L. Giorgi, D. Balloy, J.B. Guillot, Corros. Sci. 52 (2010) 2498–2504.

    Article  Google Scholar 

  25. I. Cvijović, I. Parezanović, M. Spiegel, Corros. Sci. 48 (2006) 980–993.

    Article  Google Scholar 

  26. D.J. Willis, F. Ilinca, F. Ajersch, N. Setargew, Prog. Comput. Fluid. Dyn. 7 (2007) 183–194.

    Article  Google Scholar 

  27. J. Strutzenberger, J. Faderl, Metall. Mater. Trans. A 29 (1998) 631–646.

    Article  Google Scholar 

  28. S.H. Hwang, J.H. Song, Y.S. Kim, Mater. Sci. Eng. A 390 (2005) 437–443.

    Article  Google Scholar 

  29. J.H. Selverian, M.R. Notis, A.R. Marder, J. Mater. Eng. 9 (1987) 133–140.

    Article  Google Scholar 

  30. W.S. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmin-Fetzer, W.A. Oates, Calphad 33 (2009) 328–342.

    Article  Google Scholar 

  31. PanAl-Aluminium Alloy Thermodynamic Database, in: CompuTherm, Madison, WI, USA, 2015.

  32. B.J. Xu, D. Phelan, R. Dippenaar, Mater. Sci. Eng. A 473 (2008) 76–80.

    Article  Google Scholar 

  33. G.H. Awan, F. Ul Hasan, Mater. Sci. Eng. A 472 (2008) 157-165.

  34. M. Yousaf, J. Iqbal, M. Ajmal, Mater. Charact. 62 (2011) 517–525.

    Article  Google Scholar 

  35. T. Sasaki, T. Yakou, K. Mochiduki, K. Ichinose, ISIJ Int. 45 (2005) 1887–1892.

    Article  Google Scholar 

  36. K. Bouche, F. Barbier, A. Coulet, Mater. Sci. Eng. A 249 (1998) 167–175.

    Article  Google Scholar 

  37. R. Richards, R. Jones, P. Clements, H. Clarke, Int. Mater. Rev. 39 (1994) 191–212.

    Article  Google Scholar 

  38. G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.

    Article  Google Scholar 

  39. J.P. Perdew, J. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671–6687.

    Article  Google Scholar 

  40. P.E. Blöchl, Phys. Rev. B 50 (1994) 17953–17979.

    Article  Google Scholar 

  41. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188–5192.

    Article  MathSciNet  Google Scholar 

  42. M.P. Levin, in Numerical Recipes in Fortran 90: the art of parallel scientific computing, E-Publishing: IEEE Computer Society, New York, USA, 1998, pp. 79.

    Article  Google Scholar 

  43. H.M. Jin, Y. Li, H.L. Liu, P. Wu, Chem. Mater. 12 (2000) 1879–1883.

    Article  Google Scholar 

  44. P. Wu, H.M. Jin, H.L. Liu, Chem. Mater. 14 (2002) 832–837.

    Article  Google Scholar 

Download references

Acknowledgements

The author Guang-xin Wu would like to acknowledge the support from Science and Technology Committee of Shanghai (Grant No. 16ZR1412000), National Natural Science Foundation of China (Grant Nos. 51674163 and 51104098) and Guiyang Science and Technology Project (Grant No. 20161001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-xin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Wj., Wu, Gx., Cheng, Y. et al. Interface reaction of high-strength low-alloy steel with Al–43.4Zn–1.6Si (wt.%) metallic coating. J. Iron Steel Res. Int. 26, 1304–1314 (2019). https://doi.org/10.1007/s42243-019-00275-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00275-1

Keywords

Navigation