Skip to main content

Advertisement

Log in

Hydrogen embrittlement of a microalloyed bainitic forging steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The hydrogen embrittlement (HE) of a novel microalloyed bainitic forging steel with a strength level of 1100 MPa was evaluated using electrochemical charging and slow strain rate tensile test method with notched round bar specimens. The results show that the susceptibility to HE of the as-forged bainitic forging steel is notably higher than that of the quenched and tempered (Q&T) steel at same strength level, which is ascribed primarily to the presence of a relatively high amount of large blocky martensite/austenite (M/A) constituents of the former. It was found that low-temperature tempering treatment at 200 °C could significantly alleviate the susceptibility to HE by a relative decrease of ~ 35% of the as-forged bainitic forging steel at no expense of strength and ductility, though its resistance to HE is still a little lower than that of the Q&T steel. Thus, it is suggested that efforts concerning refining of the large blocky M/A through optimizing chemical composition and processing route could help to further alleviate the susceptibility to HE of the tested bainitic forging steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Michler, J. Naumann, Int. J. Hydrogen Energy 35 (2010) 821–832.

    Article  Google Scholar 

  2. T. Depover, D. Pérez Escobar, E. Wallaert, Z. Zermout, K. Verbeken, Int. J. Hydrogen Energy 39 (2014) 4647–4656.

    Article  Google Scholar 

  3. D.J. Naylor, Ironmak. Steelmak. 16 (1989) 246–252.

    Google Scholar 

  4. S.L. Chen, W.J. Hui, L.H. Wang, G.W. Dai, H. Dong, Iron and Steel 49 (2014) No. 6, 1–7.

    Google Scholar 

  5. Y. Luo, J.M. Peng, H.B. Wang, X.C. Wu, Mater. Sci. Eng. A 527 (2010) 3433–3437.

    Article  Google Scholar 

  6. A.R. Khodabandeh, M. Jahazi, S. Yue, P. Boocher, ISIJ Int. 45 (2005) 272–280.

    Article  Google Scholar 

  7. D.K. Matlock, G. Krauss, J.G. Speer, J. Mater. Process. Technol. 117 (2001) 324–328.

    Article  Google Scholar 

  8. B. Buchmayr, Mater. Sci. Technol. 32 (2016) 517–522.

    Article  Google Scholar 

  9. T. Sourmail, V. Smanio, Mater. Sci. Eng. A 582 (2013) 257–261.

    Article  Google Scholar 

  10. C. Keul, V. Wirths, W. Bleck, Arch. Civ. Mech. Eng. 12 (2012) 119–125.

    Article  Google Scholar 

  11. H. Wu, C. Liu, Z.B. Zhao, Y. Zhao, S.Z. Zhu, Y.X. Liu, S. Bhole, Mater. Des. 27 (2006) 651–656.

    Article  Google Scholar 

  12. J.K. Zhang, L. Dong, Y. Xin, G.R. Guo, Mater. Mech. Eng. 27 (2003) No. 7, 42–44.

    Google Scholar 

  13. H. Takada, Tetsu-to-Hagané 88 (2002) 534–538.

    Article  Google Scholar 

  14. T. Shiraga, Corros. Eng. 60 (2011) 188–194.

    Article  Google Scholar 

  15. W.J. Hui, Y.J. Zhang, X.L. Zhao, C.W. Shao, K.Z. Wang, W. Sun, T.R. Yu, Mater. Sci. Eng. A 662 (2016) 528–536.

    Article  Google Scholar 

  16. N. Nanninga, J. Grochowsi, L. Heldt, K. Rundman, Corros. Sci. 52 (2010) 1237–1246.

    Article  Google Scholar 

  17. Y. Kimura, T. Inoue, E. Akiyama, Mater. Sci. Eng. A 703 (2017) 503–512.

    Article  Google Scholar 

  18. Z.B. Xu, W.J. Hui, Z.H. Wang, Y.J. Zhang, X.L. Zhao, X.M. Zhao, J. Iron Steel Res. Int. 24 (2017) 1085–1094.

    Article  Google Scholar 

  19. W.J. Hui Y.J. Zhang, X.L. Zhao, C. Zhou, K.Z. Wang, W. Sun, Mater. Sci. Eng. A 651 (2016) 311–320.

    Article  Google Scholar 

  20. K.K. Wang, Z.L. Tan, G.H. Gao, X.L. Gui, R.D.K. Misra, B.Z. Bai, Mater. Sci. Eng. A 662 (2016) 162–168.

    Article  Google Scholar 

  21. W.J. Hui, Y.J. Zhang, X.L. Zhao, N. Xiao, F.Z. Hu, Int. J. Fatigue 91 (2016) 232–241.

    Article  Google Scholar 

  22. H.F. Lan, L.X. Du, R.D.K. Misra, Mater. Sci. Eng. A 611 (2014) 194–200.

    Article  Google Scholar 

  23. F.G. Wei, T. Hara, T. Tsuchida, K. Tsuzaki, ISIJ Int. 43 (2003) 539–547.

    Article  Google Scholar 

  24. M. Nagumo, ISIJ Int. 41 (2001) 590–598.

    Article  Google Scholar 

  25. G. Lovicu, M. Bottazzi, F. D’aiuto, M. De Sanctis, A. Dimatteo, C. Santus, R. Valentini, Metall. Mater. Trans. A 43 (2012) 4075–4087.

    Article  Google Scholar 

  26. B.A. Szost, R.H. Vegter, P.E.J. Rivera-Díaz-Del-Castillo, Metall. Mater. Trans. A 44 (2013) 4542–4550.

    Article  Google Scholar 

  27. M.J. Peet, T. Hojo, Metall. Mater. Trans. A 47 (2016) 718–725.

    Article  Google Scholar 

  28. T. Hojo, K.I. Sugimoto, Y. Mukai, S. Ikeda, ISIJ Int. 48 (2008) 824–829.

    Article  Google Scholar 

  29. W.Y. Chu, L.J. Qiao, J.X. Li, Y.J. Su, Y. Yan, Y. Bai, X.C. Ren, H.Y. Huang, Hydrogen embrittlement and stress corrosion cracking, Science Press, Beijing, China, 2013.

    Google Scholar 

  30. S.L.I. Chan, H.L. Lee, J.R. Yang, Metall. Trans. A 22 (1991) 2579–2586.

    Article  Google Scholar 

  31. X.B. Shi, W. Yan, W. Wang, L.Y. Zhao, Y.Y. Shan, K. Yang, Acta Metall. Sin. (Engl. Lett.) 28 (2015) 799–808.

    Article  Google Scholar 

  32. R. Kerr, F. Solana, I.M. Bernstein, A.W. Thompson, Metall. Trans. A 18 (1987) 1011–1022.

    Article  Google Scholar 

  33. J.M. Tartaglia, K.A. Lazzari, G.P. Hui, K.L. Hayrynen, Metall. Mater. Trans. A 39 (2008) 559–576.

    Article  Google Scholar 

  34. F.C. Zhang, C.L. Zhang, B. Lv, T.S. Wang, M. Li, M. Zhang, Eng. Fail. Anal. 16 (2009) 1461–1467.

    Article  Google Scholar 

  35. M.A. Arafin, J.A. Szpunar, Mater. Sci. Eng. A 528 (2011) 4927–4940.

    Article  Google Scholar 

  36. C.L. Zhang, B. Lv, F.C. Zhang, Z.G. Yan, R. Dan, L.H. Qian, Mater. Sci. Eng. A 547 (2012) 99–103.

    Article  Google Scholar 

  37. Y.G. Li, F.C. Zhang, C. Chen, B. Lv, Z.N. Yang, C.L. Zheng, Mater. Sci. Eng. A 651 (2016) 945–950.

    Article  Google Scholar 

  38. D.H. Shim, T. Lee, J. Lee, H.J. Lee, J.Y. Yoo, C.S. Lee, Mater. Sci. Eng. A 700 (2017) 473–480.

    Article  Google Scholar 

  39. G.F. Li, R.G. Wu, T.C. Lei, Metall. Trans. A 23 (1992) 2879–2885.

    Article  Google Scholar 

  40. Y. Nakatani, T. Higashi, K. Yamada, Fatigue Fract. Eng. Mater. Struct. 22 (1999) 393–398.

    Article  Google Scholar 

  41. F. Sarıoğlu, Mater. Sci. Eng. A 315 (2001) 98–102.

    Article  Google Scholar 

  42. S.Z. Han, W.J. Hui, R.P. Liu, C.W. Shao, Trans. Mater. Heat Treatment 35 (2014) No. 7, 114–119.

    Google Scholar 

  43. X. Zhu, K. Zhang, W. Li, X.J. Jin, Mater. Sci. Eng. A 658 (2016) 400–408.

    Article  Google Scholar 

  44. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68 (2013) 321–324.

    Article  Google Scholar 

  45. J.Y. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, D.W. Suh, Acta Mater. 60 (2012) 4085–4092.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-jun Hui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Wj., Wang, Zh., Xu, Zb. et al. Hydrogen embrittlement of a microalloyed bainitic forging steel. J. Iron Steel Res. Int. 26, 1011–1021 (2019). https://doi.org/10.1007/s42243-019-00272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00272-4

Keywords

Navigation