Skip to main content
Log in

Parameters of cold pilgering of seamless steel tube

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

As the process parameters of pilger cold-rolled seamless steel tubes are basically based on experience leading to the generation of defects, 304 stainless steel was chosen and the important process parameters including the feed, rotation angle and Q value (the ratio of the length of the deformation section to that of the finishing section) were selected to analyze the effect of different process parameters on the tube forming process and rules. The results show that during the cold rolling process, the rolling force, the equivalent stress of the tube, the residual stress and the springback of the external diameter increased with the increase in the feed rate and the rotation angle and the decrease in Q value. Increasing the feed quantity and decreasing Q value will lead to the decrement in the roundness of the pipe. After comprehensive evaluation of the advantages and disadvantages, a set of optimal parameters are selected to carry out the experiment. The residual stress and the outer diameter of the finished products were measured. The results of the measurement and the numerical simulation results are within reasonable range, and the accuracy of the numerical simulations and the influence of the process parameters on the pilger cold rolling are further verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Sornin, E.A. Pachón-Rodríguez, E. Vanegas-Márquez, K. Mocellin, R. Logé, J. Mater. Eng. Perform. 25 (2016) 4059–4069.

    Article  Google Scholar 

  2. K.S. Ragger, S. Primig, R. Daniel, R. Kaiser, J. Paal, C. Mitterer, B. Buchmayr, Mater. Charact. 128 (2017) 257–268.

    Article  Google Scholar 

  3. Y. Azizoğlu, M. Gärdsback, B. Sjöberg, L. Lindgren, Procedia Eng. 207 (2017) 2370–2375.

    Article  Google Scholar 

  4. H. Stinnertz, Tube Pipe Technol. 87 (1988) 27–31.

    Google Scholar 

  5. B. Lodej, K. Niang, P. Montmitonnet, J.L. Aubin, J. Mater. Process. Technol. 177 (2006) 188–191.

    Article  Google Scholar 

  6. J. Osika, W. Libura, J. Mater. Process. Technol. 34 (1992) 325–332.

    Article  Google Scholar 

  7. S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, T. Kobayashi, J. Nucl. Mater. 283 (2000) 702–706.

    Article  Google Scholar 

  8. C. Zheng, H.W. Song, S.Y. Deng, S.H. Zhang, Procedia Eng. 207 (2017) 2346–2351.

    Article  Google Scholar 

  9. H.Q. Zhang, X.F. Wang, B.L. Wei, H. Li, Int. J. Adv. Manuf. Technol. 92 (2017) 2169–2183.

    Article  Google Scholar 

  10. Y. Barzegar, R.J. Nedoushan, A. Razazzade, M. Farzin, D. Banabic, Proc. Romanian Acad. Ser. A 17 (2016) 267–276.

    Google Scholar 

  11. P. Montmitonnet, D. Farrugia, J.L. Aubin, F. Delamare, Wear 152 (1992) 327–342.

    Article  Google Scholar 

  12. H. Abe, T. Nomura, Y. Kubota, J. Mater. Process. Technol. 214 (2014) 1627–1637.

    Article  Google Scholar 

  13. D. Pociecha, B. Boryczko, J. Osika, M. Mroczkowski, Arch. Civil Mech. Eng. 14 (2014) 376–382.

    Article  Google Scholar 

  14. F.Y. Yan, Pass design of LG730 cold-rolling pilger mill and its finite element simulation in the rolling process, Yanshan University, Qinhuangdao, China, 2015.

  15. X.F. Zhou, Forg. Stamp. Technol. 37 (2012) No. 3, 55–58.

    Google Scholar 

  16. H. Abe, M. Furugen, J. Mater. Process. Technol. 212 (2012) 1687–1693.

    Article  Google Scholar 

  17. S.N. Randall, H. Prieur, Iron Steel Eng. 2 (1967) 109–117.

    Google Scholar 

  18. H. Abe, T. Iwamoto, Y. Yamamoto, S. Nishida, R. Komatsu, J. Mater. Process. Technol. 231 (2016) 277–287.

    Article  Google Scholar 

  19. T. Fan, Research on three-roller cold rolling process of 302 stainless steel tube, Shenyang Ligong University, Shenyang, China, 2012.

  20. J.L. Liu, W.D. Zeng, Z.L. Du, H. Tao, J.H. Xi, Y. Shu, J.Z. Yang, Titan. Ind. Prog. 32 (2015) 3 21–25.

    Google Scholar 

  21. L. Huang, Z. Xu, C. Dai, S. X. Hui, W.J. Ye, G. Wang, S.S. Xie, H.W. Li, Rare Metal Mater. Eng. 42 (2013) 524–529.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant No. U1710113), the China Postdoctoral Science Foundation (Grant No. 2017M622903), the National Key Research and Development Program of Shanxi Province (Grant No. 201703D121008), the Project of Excellent Graduate Innovation in Shanxi (Grant No. 2017SY077) and the Graduate Innovation Funding Scheme for “Heavy Machinery” (Grant Nos. 20172001 and 20172004) for financial support and authorization to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-bing Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Zb., Xue, Zy., Zhang, D. et al. Parameters of cold pilgering of seamless steel tube. J. Iron Steel Res. Int. 26, 593–601 (2019). https://doi.org/10.1007/s42243-019-00269-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00269-z

Keywords

Navigation