Skip to main content
Log in

Effect of nitrogen on microstructure and secondary hardening of H21 die steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of nitrogen on the microstructure and secondary hardening of H21 die steel was studied by using scanning electron microscope, X-ray diffraction, transmission electron microscope and dilatometer. The results demonstrate that nitrogen can enhance the secondary hardening behavior of H21 hot-working die steel without toughness lose. Nitrogen addition increases the austenitic phase zone, decreasing austenite transformation temperature and martensite transformation temperature, thereby increasing the retained austenite stability. Retained austenite in quenched steel can dissolve a large quantity of alloy, thereby decreasing the coarsening rate of the precipitates. Trace nitrogen could intensify the refinement of pearlite by decreasing the diffusion rate of alloying element into carbides. Nitrogen increases the amounts and precipitation temperature of the undissolved V(C, N) and suppresses the growth of prior austenite before quenching. During tempering process, parts of nitrogen in V(C, N) dissolved back into the matrix, resulting in the distorting lattice of ferrite, thereby reinforcing the matrix. Meanwhile, the solid-dissolved nitrogen inhibits the growth of carbides by decreasing the diffusion rate of alloying elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Nurbanasari, P. Tsakiropoulos, E.J. Palmiere, ISIJ Int. 54 (2014) 1667–1676.

    Article  Google Scholar 

  2. G. Telasang, J.D. Majumdar, G. Padmanabham, I. Manna, Surf. Coat. Technol. 261 (2015) 69–78.

    Article  Google Scholar 

  3. Q. Zhou, X. Wu, N. Shi, J. Li, N. Min, Mater. Sci. Eng. A 528 (2011) 5696–5700.

    Article  Google Scholar 

  4. S.H. Chang, T.P. Tang, F.C. Tai, Surf. Eng. 27 (2013) 581–586.

    Article  Google Scholar 

  5. K.D. Fuchs, The Use of Tool Steels: Experience Research, Proceedings of the 6th International Tooling Conference, Sweden, 2002, pp. 15–22.

  6. S. Kheirandish, A. Noorian, J. Iron Steel Res. Int. 15 (2008) No. 4, 61–66.

    Article  Google Scholar 

  7. B. Podgornik, I. Paulin, B. Zajec, S. Jacobson, J. Mater. Process. Technol. 229 (2016) 398–406.

    Article  Google Scholar 

  8. S.H. Chang, L. Shih-Chih, T.P. Tang, Mater. Trans. 49 (2008) 619–623.

    Article  Google Scholar 

  9. J.Z. Gao, P.X. Fu, H.W. Liu, D.Z. Li, Metals 5 (2015) 383–394.

    Article  Google Scholar 

  10. L. Wang, J. Li, B. Ning, Y.Y. Li, Mater. Trans. 55 (2014) 1104–1108.

    Article  Google Scholar 

  11. H.F. Xu, F. Yu, C. Wang, J. Iron Steel Res. Int. 24 (2017) 206–213.

    Article  Google Scholar 

  12. E. Werner, Mater. Sci. Eng. A 101 (1988) 93–98.

    Google Scholar 

  13. J.Y. Li, Y.L. Chen, J.H Huo, Mater. Sci. Eng. A 640 (2015) 16–23.

    Article  Google Scholar 

  14. Z.Q. Wang, H. Zhang, C.H. Guo, F.C. Jiang, J. Mater. Sci. 51 (2016) 4996–5007.

    Article  Google Scholar 

  15. Q.L. Yong, Secondary phases in steels, Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  16. S.D. Yadav, B. Sonderegger, B. Sartory, C. Sommitsch, C. Poletti, Mater. Sci. Technol. 31 (2015) 554–564.

    Article  Google Scholar 

  17. J. Fu, G. Li, X. Mao, K. Fang, Metall. Mater. Trans. A 42 (2011) 3797–3812.

    Article  Google Scholar 

  18. L.Q. Xu, D.T. Zhang, Y.C. Liu, B.Q. Ning, Z.X. Qiao, Z.S. Yan, H.J. Li, Int. J. Min. Met. Mater. 21 (2014) 438–447.

    Article  Google Scholar 

  19. F.J. Semel, D.A. Lados, Int. J. Powder Metall. 46 (2010) 33–42.

    Google Scholar 

  20. V. Prokoshkina, L. Kaputkina, Mater. Sci. Eng. A 481 (2008) 762–765.

    Article  Google Scholar 

  21. H. Nakagawa, T. Miyazaki, J. Mater. Sci. 34 (1999) 3901–3908.

    Article  Google Scholar 

  22. N. Saklakoğlu, J. Mater. Process. Technol. 189 (2007) 367–373.

    Article  Google Scholar 

  23. H. Wang, J. Li, C.B. Shi, J. Li, Mater. Trans. 58 (2017) 152–156.

    Article  Google Scholar 

  24. X. Song, Z. Jie, Y.W. Zhang, P. Geng, Trans. Mater. Heat Treat. 33 (2012) 100–105.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from National Key Research and Development Program of China (2016YFB0300200) and National Natural Science Foundation of China (Grant No. U1660114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-yuan Li or Yan-bin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Jb., Liu, Hq., Li, Jy. et al. Effect of nitrogen on microstructure and secondary hardening of H21 die steel. J. Iron Steel Res. Int. 26, 483–489 (2019). https://doi.org/10.1007/s42243-018-0164-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0164-6

Keywords

Navigation