Skip to main content
Log in

Precipitation kinetics of complex precipitate in multicomponent systems

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an important guidance for determining solution treatment temperature, is also proposed based on thermodynamic model. In the model, nucleation of the second phase is assumed to be controlled by the effective diffusion, which involves the bulk diffusion and dislocation pipe diffusion, and growth is controlled by the bulk diffusion of forming elements. The interfacial energy of complex precipitate is calculated by the linear interpolation method, and the effects of alloying elements on precipitation behavior are manifested using weighted means of their diffusivities and concentration. The predictions were compared with the experimental measurements, and a good agreement was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Adrian, Mater. Sci. Technol. 8 (1992) 406–420.

    Article  Google Scholar 

  2. P.R. Rios, Mater. Sci. Eng. A 142 (1991) 87–94.

    Article  Google Scholar 

  3. K. Xu, B.G. Thomas, R. O’malley, Metall. Mater. Trans. A 42 (2010) 524–539.

    Article  Google Scholar 

  4. Y. Xu, D. Tang, Y. Song, Steel Res. Int. 84 (2013) 560–564.

    Article  Google Scholar 

  5. A. Deschamps, F. Danoix, F. De Geuser, T. Epicier, H. Leitner, M. Perez, Mater. Lett. 65 (2011) 2265–2268.

    Article  Google Scholar 

  6. B. Dutta, E. Valdes, C.M. Sellars, Acta Metall. Mater. 40 (1992) 653–662.

    Article  Google Scholar 

  7. Z. Wang, X. Sun, Z. Yang, Q. Yong, C. Zhang, Z. Li, Y. Weng, Mater. Sci. Eng. A 561 (2013) 212–219.

    Article  Google Scholar 

  8. M. Nöhrer, W. Mayer, S. Primig, S. Zamberger, E. Kozeschnik, H. Leitner, Metall. Mater. Trans. A 45 (2014) 4210–4219.

    Article  Google Scholar 

  9. A.J. Craven, K. He, L.A.J. Garvie, T.N. Baker, Acta Mater. 48 (2000) 3857–3868.

    Article  Google Scholar 

  10. X.D. Huo, L.J. Li, Z.W. Peng, S.J. Chen, J. Iron Steel Res. Int. 23 (2016) 593–601.

    Article  Google Scholar 

  11. Y.J. Hui, Y. Yu, L. Wang, C. Wang, W.Y. Li, B. Chen, J. Iron Steel Res. Int. 23 (2016) 385–392.

    Article  Google Scholar 

  12. H.B. Pan, M.J. Zhang, W.M. Liu, J. Yan, H.T. Wang, C.S. Xie, Z. Guo, J. Iron Steel Res. Int. 24 (2017) 536–543.

    Article  Google Scholar 

  13. M. Kapoor, R. O’Malley, G.B. Thompson, Metall. Mater. Trans. A 47 (2016) 1984–1995.

    Article  Google Scholar 

  14. K. Miyata, T. Kushida, T. Omura, Y. Komizo, Metall. Mater. Trans. A 34 (2003) 1565–1573.

    Article  Google Scholar 

  15. C.Y. Chen, C.C. Chen, J.R. Yang, Mater. Charact. 88 (2014) 69–79.

    Article  Google Scholar 

  16. X. Li, Z. Wang, X. Deng, G. Wang, R.D.K. Misra, Metall. Mater. Trans. A 47 (2016) 1929–1938.

    Article  Google Scholar 

  17. S. Shanmugam, M. Tanniru, R.D.K. Misra, D. Panda, S. Jansto, Mater. Sci. Technol. 21 (2013) 883–892.

    Article  Google Scholar 

  18. J.G. Jung, J.S. Park, J. Kim, Y.K. Lee, Mater. Sci. Eng. A 528 (2011) 5529–5535.

    Article  Google Scholar 

  19. W.J. Liu, J.J. Jonas, Metall. Mater. Trans. A 20 (1989) 689–697.

    Article  Google Scholar 

  20. N. Fujita, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17 (2001) 403–408.

    Article  Google Scholar 

  21. F. Perrard, A. Deschamps, P. Maugis, Acta Mater. 55 (2007) 1255–1266.

    Article  Google Scholar 

  22. C. Hin, Y. Bréchet, P. Maugis, F. Soisson, Acta Mater. 56 (2008) 5535–5543.

    Article  Google Scholar 

  23. P. Maugis, M. Gouné, Acta Mater. 53 (2005) 3359–3367.

    Article  Google Scholar 

  24. B. Dutta, E.J. Palmiere, C.M. Sellars, Acta Mater. 49 (2001) 785–794.

    Article  Google Scholar 

  25. Q.L. Yong, Secondary phase in steels, Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  26. M. Perez, M. Dumont, D. Acevedo-Reyes, Acta Mater. 56 (2008) 2119–2132.

    Article  Google Scholar 

  27. S. Okaguchi, T. Hashimoto, ISIJ Int. 32 (1992) 283–290.

    Article  Google Scholar 

  28. J.D. Robson, Acta Mater. 52 (2004) 4669–4676.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51234002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Jia or Zhao-dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, Tr., Jia, T. et al. Precipitation kinetics of complex precipitate in multicomponent systems. J. Iron Steel Res. Int. 25, 1086–1093 (2018). https://doi.org/10.1007/s42243-018-0147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0147-7

Keywords

Navigation