Skip to main content
Log in

Coarsening kinetics of multicomponent MC-type carbides in high-strength low-alloy steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Morphology and coarsening kinetics of MC-type carbide (MC-carbide) precipitating during the tempering process have been investigated in V- and Nb-bearing Cr-Mo martensitic steels. Detailed transmission electron microscopy (TEM) observations show that the addition of V and Nb stabilizes the B1-type MC-carbide instead of L’3-type M2C-carbide. The morphology of the MC-carbide is characterized as disk-like with Baker and Nutting orientation relationships with the matrix. When the specimens are fully solution treated followed by quenching, the MC-carbide precipitates as a multicomponent system with continuous solid solution of VC, NbC, and MoC. The V-, Nb-, and Mo-partitioning control the lattice parameter of MC-carbide and consequently affect the coherency between MC-carbide and the matrix. The coherent MC-carbide grows into an incoherent one with the progress of tempering. The numerical analysis on TEM observations has shown that the coarsening kinetics of MC-carbide is equated to (time)1/5 criteria, while the coarsening kinetics of the coexisting cementite is equated to (time)1/3 criteria. It is thus suggested that the Ostwald ripening of MC-carbide is controlled by pipe diffusion of V, Nb, and Mo along dislocations. It has been confirmed that the coarsening rate of the multicomponent MC-carbide is affected by V, Nb, and Mo content. Applying the thermodynamic solution database, the rate equation for MC-carbide coarsening can be expressed as a function of V, Nb, and Mo content, and the activation energy for pipe diffusion can be estimated as ΔQ v: ΔQ Nb: ΔQ Mo=1:3.9:0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers, Ltd., London, 1978, pp. 60–100.

    Google Scholar 

  2. R.W.K. Honeycombe: Steels, Microstructure and Properties, Edward Arnold, London, 1980, pp. 140–65.

    Google Scholar 

  3. R.W.K. Honeycombe: Metall. Trans. A, 1976, vol. 7A, pp. 915–36.

    CAS  Google Scholar 

  4. P.J. Grobner, D.L. Sponseller, and W.W. Cias: Mater. Performance, 1975, vol. 14(6), pp. 35–37.

    CAS  Google Scholar 

  5. T. Kaneko, Y. Okada, and A. Okeda: NACE Corrosion 87, NACE, Houston, TX, 1987, paper no. 291.

    Google Scholar 

  6. S.W. Ciaraldi: in Stress-Corrosion Cracking, By Russell H. Jones, ed., 1992, pp. 41–62.

  7. W.B. Pearson: Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, London, 1958, pp. 924–65.

    Google Scholar 

  8. G. Ghosh, C.E. Cambell, and G.B. Olson: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 501–12.

    Article  CAS  Google Scholar 

  9. J.W. Christian: in The Theory of Transformations in Metals and Alloys, G.V. Raynor, ed., Pergamon Press, Oxford, 1965, pp. 433–70.

    Google Scholar 

  10. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  11. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  12. M.V. Speight: Acta Metall., 1969, vol. 16, pp. 133–38.

    Google Scholar 

  13. H.O.K. Kirchner: Metall. Trans., 1971, vol. 2, pp. 2861–864.

    Google Scholar 

  14. M. Kreye: Z. Metallkd., 1970, vol. 61, pp. 108–19.

    CAS  Google Scholar 

  15. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 601–09.

    Article  Google Scholar 

  16. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 61–71.

    Article  Google Scholar 

  17. Byeong Joo Lee: Z. Metallkd., 1992, vol. 83, pp. 292–99.

    CAS  Google Scholar 

  18. W. Huang: Z. Metallkd., 1990, vol. 81, pp. 397–404.

    CAS  Google Scholar 

  19. J.O. Andersson: CALPHAD, 1988, vol. 12, pp. 9–23.

    Article  CAS  Google Scholar 

  20. H.G. Lee and J.Y. Lee: Acta Metall., 1984, vol. 32, pp. 131–36.

    Article  CAS  Google Scholar 

  21. H. Oikawa: “Lattice Self-Diffusion in Solid Iron; A Critical Review,” Technical Report, Tohoku University, Sendai, Japan, 1982, vol. 46, pp. 67–77.

    Google Scholar 

  22. A.W. Bowen and G.M. Leak: Metall. Trans., 1970, vol. 1, pp. 1695–1700.

    CAS  Google Scholar 

  23. J. Kucera, B. Million, and K. Ciha: Kov. Mater., 1969, vol. 7, pp. 97–107.

    CAS  Google Scholar 

  24. T. Sato, T. Nishizawa, and H. Honda: Tetsu-to-Hagané, 1954, vol. 40, pp. 1115–19.

    Google Scholar 

  25. E. Furubayashi: Trans. Nat. Res. Inst. Met., 1989, vol. 31, pp. 1–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyata, K., Kushida, T., Omura, T. et al. Coarsening kinetics of multicomponent MC-type carbides in high-strength low-alloy steels. Metall Mater Trans A 34, 1565–1573 (2003). https://doi.org/10.1007/s11661-003-0303-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0303-x

Keywords

Navigation