Skip to main content
Log in

Effect of cooling time t8/5 on microstructure and toughness of Nb–Ti–Mo microalloyed C–Mn steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to further optimize welding process of Nb–Ti–Mo microalloyed steel, welding thermal cycles on coarse-grained heat-affected zone (CGHAZ) of welded joints were simulated using Gleeble 1500. The microstructure and low-temperature impact fracture were investigated using a scanning electron microscope and a pendulum impact machine, respectively. Moreover, the relationship between cooling time t8/5 and the microstructure of CGHAZ was discussed, and the effect of microstructure on impact toughness was also studied. As cooling time increased, martensite fraction decreased from 97.8% (3 s) to 3.0% (60 s). The fraction of martensite/austenite (M/A) constituent increased from 2.2% (3 s) to 39.0% (60 s), its shape changed from granular to strip, and the maximum length increased from 2.4 μm (3 s) to 7.0 μm (60 s). As cooling time increased, the prior austenite grain size increased from 34.0 μm (3 s) to 49.0 μm (60 s), the impact absorption energy reduced from 101.8 J (5 s) to 7.2 J (60 s), and the fracture mechanism changed from quasi-cleavage fracture to cleavage fracture. The decreased toughness of CGHAZ was due to the reduction of lath martensite-content, coarsening of original austenite grain, and increase and coarsening of M/A constituent. The heat input was controlled under 7 kJ cm−1 during actual welding for these steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.Y. Chen, C.C. Chen, J.R. Yang, Mater. Charact. 88 (2013) 69–79.

    Article  Google Scholar 

  2. M.P. Phaniraj, Y.M. Shin, J. Lee, N.H. Goo, D.I. Kim, J.Y. Suh, Mater. Sci. Eng. A 633 (2015) 1–8.

    Article  Google Scholar 

  3. Q. Sun, H.S. Di, X.N. Wang, X.M. Chen, X.N. Qi, J.P. Li, Materials 11 (2018) 1135–1147.

    Article  Google Scholar 

  4. C.W. Tan, J. Yang, X.Y. Zhao, K.P. Zhang, X.G. Song, B. Chen, L.Q. Li, J.C. Feng, J. Alloy. Compd. 764 (2018) 186–201.

    Article  Google Scholar 

  5. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.X. Du, J. Mater. Sci. 47 (2012) 4732–4742.

    Article  Google Scholar 

  6. A.E. Amer, Y.K. Min, K.H. Lee, H.K. Sang, S.H. Hong, J. Mater. Sci. 45 (2010) 1248–1254.

    Article  Google Scholar 

  7. J.M. Ni, Z.G. Li, J. Huang, Y.X. Wu, Mater. Des. 31 (2010) 4876–4880.

    Article  Google Scholar 

  8. H. Xie, L.X. Du, J. Hu, G.S. Sun, H.Y. Wu, R.D.K. Misra, Mater. Sci. Eng. A 639 (2015) 482–488.

    Article  Google Scholar 

  9. B. Hutchinson, J. Komenda, G.S. Rohrer, H. Beladi, Acta Mater. 97 (2015) 380–391.

    Article  Google Scholar 

  10. Z.Y. Du, Welding science foundation-material welding science foundation, Machinery Industry Press, Beijing, 2012.

    Google Scholar 

  11. W. Meng, Z.G. Li, X.X. Jiang, J. Huang, Y.X. Wu, S. Katayama, J. Mater. Eng. Perform. 23 (2014) 3640–3648.

    Article  Google Scholar 

  12. Q. Sun, H.S. Di, J.C. Li, B.Q. Wu, R.D.K. Misra, Mater. Sci. Eng. A 669 (2016) 150–158.

    Article  Google Scholar 

  13. F. Lu, G.P. Cheng, F. Chai, T. Pan, Z.R. Shi, S.U. Hang, J. Iron Steel Res. Int. 23 (2016) 1086–1095.

    Article  Google Scholar 

  14. M. Sokolov, A. Salminen, M. Kuznetsov, I. Tsibulskiy, Mater. Des. 32 (2011) 5127–5131.

    Article  Google Scholar 

  15. S. Kumar, S.K. Nath, V. Kumar, Mater. Des. 90 (2016) 177–184.

    Article  Google Scholar 

  16. S. Lee, B.S. Kim, D. Kwon, Metall. Mater. Trans. A 24 (1993) 1133–1141.

    Article  Google Scholar 

  17. L.Y. Lan, C.L. Qiu, H.Y. Song, D.W. Zhao, Mater. Lett. 125 (2014) 86–88.

    Article  Google Scholar 

  18. M. Zhang, X.N. Wang, G.J. Zhu, Acta Metall. 27 (2014) 521–529.

    Article  Google Scholar 

  19. F. Matsuda, K. Ikeuchi, H. Okada, I. Hrivnak, H.S. Park, Trans. JWRI 23 (1994) 231–238.

    Google Scholar 

  20. D.L. Shu, Metal mechanical property, Mechanical Industry Press, Beijing, 1987.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51775102), Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (No. 2016005) and Project Funded by China Postdoctoral Science Foundation (No. 2016M601877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-nan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xn., Chen, Xm., Wen, F. et al. Effect of cooling time t8/5 on microstructure and toughness of Nb–Ti–Mo microalloyed C–Mn steel. J. Iron Steel Res. Int. 25, 1078–1085 (2018). https://doi.org/10.1007/s42243-018-0146-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0146-8

Keywords

Navigation