Skip to main content
Log in

Establishment and industrial practice of high-temperature process evaluation system in sintering

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The behaviors of typical iron ores at high temperature were observed by confocal scanning laser microscopy. Four critical temperature points and liquid flow velocity at high temperatures of iron ores were obtained and the temperature points contain temperature at which sample starts to shrink, temperature at which the initial liquid phase forms, temperature at which a lot of liquid forms and temperature at which liquid consolidation ends. Under the same CaO to Fe2O3 ratio, the liquid phase fluidity of iron ore fines of Carajas (IOC) is good. However, under the same basicity, as the content of SiO2 in IOC is low, the liquid phase fluidity of IOC is much smaller than that of Yandi fine. After analysis of the initial formation and development of the liquid phase and the final consolidation process, the high-temperature process evaluation system (HTPES for short) of iron ore was established. The idea of “dense ore matching fusible ore” instead of “relatively fusible ore” was proposed based on the results of HTPES and applied in ore matching of a sinter plant from Shougang Jingtang. The use of IOC (13–18%) instead of standard sintering fines (SSF) improved liquid phase fluidity and ensured the sinter quality. Furthermore, the use of IOC fine (18–23%) with Hainan fine (0–2%) instead of SSF, a mixture of hematite and Marra Mamba ore and concentrates guaranteed the quality of sinter ore through improving fluidity, in the meantime reducing ore matching costs. With the establishment and application of HTPES, the sinter plant has achieved good economic benefits under the premise of ensuring the quality of sinter ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Oyama, K. Nushiro, K. Igawa, K. Sorimachi, Tetsu-to-Hagané 83 (1997) 287–292.

    Article  Google Scholar 

  2. C.E. Loo, ISIJ Int. 45 (2005) 436–448.

    Article  Google Scholar 

  3. E. Kasai, S. Wu, Y. Omori, Tetsu-to-Hagané 77 (1991) 56–62.

    Article  Google Scholar 

  4. G.P. Luo, S.L. Wu, G.J. Zhang, Y.C. Wang, J. Iron Steel Res. Int. 20 (2013) No. 3, 18–23.

    Article  Google Scholar 

  5. J. Okazaki, Y. Hosotani, M. Nakano, Tetsu-to-Hagané 89 (2003) 237–243.

    Article  Google Scholar 

  6. F.M. Shen, G.S. Li, Z.M. Ding, L. Mu, J. Iron Steel Res. Int. 16 (2009) No. 3, 1–5.

    Article  Google Scholar 

  7. Z.X. Zhao, Y.D. Pei, W. Pan, H.B. Jiang, H.G. Li, Iron and Steel 45 (2010) No. 12, 12–16.

    Google Scholar 

  8. Y. Hida, J. Okazaki, K. Itoh, M. Sasaki, Tetsu-to-Hagané 73 (1987) 1893–1900.

    Article  Google Scholar 

  9. K. Higuchi, Y. Hosotani, Y. Hida, Tetsu-to-Hagané 84 (1998) 171–176.

    Article  Google Scholar 

  10. Y. Hida, J. Okazakt, K. Ito, S. Hirakawa, Tetsu-to-Hagané 78 (1992) 1013–1020.

    Article  Google Scholar 

  11. Y.C. Wang, J.L. Zhang, F. Zhang, G.P. Luo, J. Iron Steel Res. Int. 18 (2011) No. 10, 1–7.

    Article  Google Scholar 

  12. T. Kawaguchi, T. Usui, ISIJ Int. 45 (2005) 414–426.

    Article  Google Scholar 

  13. Y. Niwa, N. Sakamoto, O. Komatsu, H. Noda, A. Kumasaka, ISIJ Int. 33 (1993) 454–461.

    Article  Google Scholar 

  14. S.V. Komarov, H. Shibata, N. Hayashi, E. Kasai, J. Iron Steel Res. Int. 17 (2010) No. 10, 1–7.

    Article  Google Scholar 

  15. D. Oliveira, S.L. Wu, Y.M. Dai, J. Xu, H. Chen, J. Iron Steel Res. Int. 19 (2012) No. 6, 1–5.

    Article  Google Scholar 

  16. L.J. Yan, S.L. Wu, Y. You, Y.D. Pei, L.H. Zhang, J. Univ. Sci. Technol. Beijing 32 (2010) 298–305.

    Google Scholar 

  17. M. Kimura, R. Murao, ISIJ Int. 53 (2013) 2047–2055.

    Article  Google Scholar 

  18. N.A.S. Webster, D.P. O’dea, B.G. Ellis, M.I. Pownceby, ISIJ Int. 57 (2017) 41–47.

    Article  Google Scholar 

  19. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, J.A. Kimpton, Metall. Mater. Trans. B 43 (2012) 1344–1357.

    Article  Google Scholar 

  20. H. Matsuura, M. Kurashige, M. Naka, F. Tsukihashi, ISIJ Int. 49 (2009) 1283–1289.

    Article  Google Scholar 

  21. M. Reid, D. Phelan, R. Dippenaar, ISIJ Int. 44 (2004) 565–572.

    Article  Google Scholar 

  22. H.M. Long, X.L. Yuan, Z.M. Liu, Iron ore sintering principle and process, Metallurgical Industry Press, Beijing, 2010.

    Google Scholar 

  23. X.L. Wang, Iron and steel metallurgy (iron part), Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  24. X.W. Lv, C.G. Bai, Q.Y. Deng, X.B. Huang, G.B. Qiu, ISIJ Int. 51 (2011) 722–727.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (2017YFB0304300 and 2017YFB0304301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-dong Pei or Sheng-li Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Yd., Wu, Sl., Shao, Xj. et al. Establishment and industrial practice of high-temperature process evaluation system in sintering. J. Iron Steel Res. Int. 25, 910–922 (2018). https://doi.org/10.1007/s42243-018-0132-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0132-1

Keywords

Navigation