Skip to main content
Log in

Prediction of alloy composition and microhardness by random forest in maraging stainless steels based on a cluster formula

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Fe–Ni–Cr-based super-high-strength maraging stainless steels were generally realized by multiple-element alloying under a given heat treatment processing. A series of alloy compositions were designed with a uniform cluster formula of [Ni16Fe192](Cr32(Ni16–xyzmnMoxTiyNbzAlmVn)) (at.%) that was developed out of a unique alloy design tool, a cluster-plus-glue-atom model. Alloy rods with a diameter of 6 mm were prepared by copper-mold suction-cast processing under the argon atmosphere. These alloy samples were solid-solutioned at 1273 K for 1 h, followed by water-quenching, and then aged at 783 K for 3 h. The effect of the valence electron concentration, characterized with the number of valence electrons per unit cluster (VE/uc) formula of 16 atoms, on microhardness of these designed maraging stainless steels at both solid-solutioned and aged states was investigated. The relationship between alloy compositions and microhardness in maraging stainless steels was firstly established by the random forest (RF, a kind of machine learning methods) based on the experimental results. It was found that not only the microhardness of any given composition alloy within the frame of cluster formula, but also the alloy composition with a maximum microhardness for any given VE/uc, could be predicted in good agreement with the guidance of the relationship by RF. The contributions of minor-alloying elements to the microhardness of the aged alloys were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Pollard, in: D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards (Eds.), ASM Handbook, Materials Park, New York, 1993, pp. 482–494.

  2. P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, Acta Mater. 55 (2007) 4877–4889.

    Article  Google Scholar 

  3. Z. Guo, W. Sha, D. Vaumousse, Acta Mater. 51 (2003) 101–116.

    Article  Google Scholar 

  4. M. Schober, R. Schnitzer, H. Leitner, Ultramicroscopy 109 (2009) 553–562.

    Article  Google Scholar 

  5. M. Hattestrand, J.O. Nilsson, K. Stiller, P. Liu, M. Andersson, Acta Mater. 52 (2004) 1023–1037.

    Article  Google Scholar 

  6. D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Acta Mater. 54 (2006) 841–849.

    Article  Google Scholar 

  7. W. Xu, P.E.J. Rivera-Diaz-del-Castillo, W. Yan, K. Yang, D.S. Martin, L.A.I. Kestens, S. Zwaag, Acta Mater. 58 (2010) 4067–4075.

    Article  Google Scholar 

  8. S. Ifergane, E. Sabatani, B. Carmeli, Z. Barkay, V. Ezersky, O. Beeri, N. Eliaz, Electrochim. Acta 178 (2015) 494–503.

    Article  Google Scholar 

  9. K. Ishida, J. Alloy. Compd. 220 (1995) 126–131.

    Article  Google Scholar 

  10. G.B. Olson, Science 277 (1997) 1237–1242.

    Article  Google Scholar 

  11. W. Xu, P.E.J. Rivera-Diaz-del-Castillo, S. Zwaag, Phil. Mag. 89 (2009) 1647–1661.

    Article  Google Scholar 

  12. V. Trabadelo, S. Giménez, T. Gómez-Acebo, I. Iturriza, Scripta Mater. 53 (2005) 287–292.

    Article  Google Scholar 

  13. Y. He, K. Yang, W. Sha, Metall. Mater. Trans. A 36 (2005) 2273–2287.

    Article  Google Scholar 

  14. J.M. Cowley, Phys. Rev. 120 (1960) 1648–1657.

    Article  Google Scholar 

  15. H.L. Hong, Q. Wang, C. Dong, P.K. Liaw, Sci. Rep. 4 (2014) 7065.

    Article  Google Scholar 

  16. Z. Li, R.Q. Zhang, Q.F. Zha, Y.M. Wang, J.B. Qiang, C. Dong, Prog. Nat. Sci. Mater. Int. 24 (2014) 35–41.

    Article  Google Scholar 

  17. J.S. Wrogel, D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, S.L. Dudarev, Phys. Rev. B 91 (2015) 024108.

    Article  Google Scholar 

  18. P. Erhart, A. Caro, M. Serrano de Caro, B. Sadigh, Phys. Rev. B 77 (2008) 134206.

    Article  Google Scholar 

  19. S. Lefebver, F. Bley, M. Bessiere, M. Fayard, Acta Cryst. A 36 (1980) 1–7.

    Article  Google Scholar 

  20. R.W. Cahn, P. Hassen, Physical metallurgy, 4th ed., Elsevier Science B.V., Amsterdam, 1996, pp. 48–50.

    Google Scholar 

  21. U. Mizutani, Hume-Rothery rules for structurally complex alloy phases, CRC Press, New York, 2011.

    Google Scholar 

  22. T.B. Massalski, Mater. Trans. 51 (2010) 583–596.

    Article  Google Scholar 

  23. E.O. Hall, S.H. Algie, Metall. Rev. 11 (1966) 61–88.

    Google Scholar 

  24. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Science 300 (2003) 464–467.

    Article  Google Scholar 

  25. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (2011) 103505.

    Article  Google Scholar 

  26. L. Breiman, Mach. Learn. 45 (2001) 5–32.

    Article  Google Scholar 

  27. K.J. Archer, R.V. Kimes, Comput. Stat. Data Anal. 52 (2008) 2249–2260.

    Article  Google Scholar 

  28. M. Liu, M. Wang, J. Wang, D. Li, Sensors Actuat. B Chem. 177 (2013) 970–980.

    Article  Google Scholar 

  29. A. Cutler, J.R. Stevens, Random forests for microarrays, Methods in Enzymology; DNA Microarrays, Part B: Databases and Statistics, Academic Press, Pittsburgh, 2006, pp. 422–432.

  30. S. Rana, S. Jasola, R. Kumar, Artif. Intell. Rev. 35 (2011) 211–222.

    Article  Google Scholar 

  31. T. Cura, Expert Syst. Appl. 39 (2012) 1582–1588.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the International Science & Technology Cooperation Program of China (No. 2015DFR60370), the National Natural Science Foundation of China (No. U1610256), the National Magnetic Confinement Fusion Energy Research Project (2015GB121004), the Fundamental Research Funds for the Central Universities (No. DUT16ZD212), the Natural Science Foundation of Liaoning Province of China (No. 2015020202), and the Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for non-ferrous metal and featured materials (No. GXKFJ16-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wen, Dh., Ma, Y. et al. Prediction of alloy composition and microhardness by random forest in maraging stainless steels based on a cluster formula. J. Iron Steel Res. Int. 25, 717–723 (2018). https://doi.org/10.1007/s42243-018-0104-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0104-5

Keywords

Navigation