Skip to main content

Advertisement

Log in

An input–output model for energy accounting and analysis of industrial production processes: a case study of an integrated steel plant

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To promote sustainability, it has become increasingly vital to properly account material and energy flows in industrial production processes. Therefore, a generic process-level input–output (IO) model was developed to provide an integrated energy (material) accounting and analysis approach for industrial production processes. By extending the existing process-level IO models, the production, usage, export and loss of by-products were explicitly considered in the proposed IO model. Moreover, the by-products allocation procedures were incorporated into the proposed IO model to reflect individual contributions of products to energy consumption. Finally, the proposed model enabled calculating embodied energy of main products and total energy consumption under hierarchical accounting scope. Plant managers, energy management consultants, governmental officials and academic researchers could use this input–output model to account material and energy flows, thus calculating energy consumption indicators of a production process with their specific system boundary requirements. The accounting results could be further used for energy labeling, identifying bottlenecks of production activities, evaluating industrial symbiosis effects, improving materials and energy utilization efficiency, etc. The model could also be used as a planning tool to determine the effect that a particular change of technology and supply chains may have on the industrial production processes. The proposed model was tested and applied in a real integrated steel mill, which also provided the reference results for related researches. At last, some concepts, computational issues and limitations of the proposed model were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.K. Bakthavatsalam, Energy Eng. 107 (2010) No. 4, 69–79.

    Article  Google Scholar 

  2. N. Ozalp, Int. J. Hydrogen Energy 33 (2008) 5020–5034.

    Article  Google Scholar 

  3. T. Gao, L. Shen, M. Shen, L. Liu, F. Chen, J. Clean. Prod. 112 (2016) 553–565.

    Article  Google Scholar 

  4. J. Laurijssen, A. Faaij, E. Worrell, Energy Efficiency 6 (2013) 49–63.

    Article  Google Scholar 

  5. E. Alkaya, G.N. Demirer, J. Clean. Prod. 65 (2014) 595–603.

    Article  Google Scholar 

  6. Z. Utlu, O. Kincay, Energy 57 (2013) 565–573.

    Article  Google Scholar 

  7. H.H. Kellogg, Metall. Mater. Trans. B 6 (1975) 77–81.

    Article  Google Scholar 

  8. M. Barati, Energy 35 (2010) 3731–3737.

    Article  Google Scholar 

  9. H.L. Xu, G.Y. Pan, Y.J. Shao, Energy Metall. Ind. 36 (2017) No. 2, 3–7.

    Google Scholar 

  10. ISO 14404-1, Calculation method of carbon dioxide emission intensity from iron and steel production-Part 1: Steel plant with blast furnace, 2013.

  11. ISO 14404-2, Calculation method of carbon dioxide emission intensity from iron and steel production-Part 2: Steel plant with electric arc furnace (EAF), 2013.

  12. R.E. Miller, P.D. Blair, Input-output analysis: foundations and extensions, Cambridge University Press, New York, 2009.

    Book  MATH  Google Scholar 

  13. D. Cortés-Borda, G. Guillén-Gosálbez, L. Jiménez, Energy 91 (2015) 91–101.

    Article  Google Scholar 

  14. H. Liu, K.R. Polenske, J.J.M. Guilhoto, Energy 71 (2014) 414–420.

    Article  Google Scholar 

  15. B. Su, B.W. Ang, Appl. Energy 114 (2014) 377–384.

    Article  Google Scholar 

  16. S. Liang, C. Wang, T. Zhang, Ecolog. Econ. 69 (2010) 1805–1813.

    Article  Google Scholar 

  17. X. Lin, K.R. Polenske, Struct. Change Econ. Dyn. 9 (1998) 205–226.

    Article  Google Scholar 

  18. Z.W. Lu, J.J. Cai, The foundation of system energy conservation, Northeastern University Press, Shenyang, 2010.

    Google Scholar 

  19. K.R. Polenske, F.C. McMichael, Energ. Policy 30 (2002) 865–883.

    Article  Google Scholar 

  20. V. Albino, E. Dietzenbacher, S. Kühtz, Econ. Syst. Res. 15 (2003) 457–480.

    Article  Google Scholar 

  21. V. Albino, C. Izzo, S. Kühtz, Int. J. Prod. Econ. 78 (2002) 119–131.

    Article  Google Scholar 

  22. V. Albino, S. Kühtz, J. Environ. Inform. 1 (2003) 8–20.

    Article  Google Scholar 

  23. V. Albino, S. Kühtz, Resour. Conserv. Recycl. 41 (2004) 165–176.

    Article  Google Scholar 

  24. S. Kuhtz, C. Zhou, V. Albino, D.M. Yazan, Energy 35 (2010) 364–374.

    Article  Google Scholar 

  25. S. Liang, X.P. Jia, T.Z. Zhang, Clean Technol. Environ. Policy 13 (2011) 71–85.

    Article  Google Scholar 

  26. J. Ranganathan, L. Corbier, P. Bhatia, S. Schmitz, P. Gage, K. Oren, The greenhouse gas protocol: a corporate accounting and reporting standard (revised edition), World Resources Institute and World Business Council for Sustainable Development, Washington, DC, 2004.

    Google Scholar 

  27. ISO 14041, Environmental management - life cycle assessment - goal and scope definition and inventory analysis, 1998.

  28. A.M. Tillman, T. Ekvall, H. Baumann, T. Rydberg, J. Clean. Prod. 2 (1994) 21–29.

    Article  Google Scholar 

  29. J. Jung, N. von der Assen, A. Bardow, Int. J. Life Cycle Assess. 18 (2013) 828–839.

    Article  Google Scholar 

  30. Worldsteel Association, CO2 emissions data collection (User Guide, version 6), 2012.

  31. S.L. Liu, H.T. Wang, J. Chen, Q. He, H. Zhang, R. Jiang, X. Chen, P. Hou, Acta Sci. Circumst. 30 (2010) 2136–2144.

    Google Scholar 

  32. T. Norgate, N. Haque, J. Clean. Prod. 18 (2010) 266–274.

    Article  Google Scholar 

  33. S. Marinković, V. Radonjanin, M. Malešev, I. Ignjatović, Waste Manage. 30 (2010) 2255–2264.

    Article  Google Scholar 

  34. R. Jiang, H.T. Wang, H. Zhang, X. Chen, Acta Sci. Circumst. 30 (2010) 2361–2368.

    Google Scholar 

  35. C. Chen, G. Habert, Y. Bouzidi, A. Jullien, A. Ventura, Resourc. Conserv. Recycl. 54 (2010) 1231–1240.

    Article  Google Scholar 

  36. B. Yu, X. Li, L. Shi, Y. Qian, J. Clean. Prod. 103 (2015) 801–810.

    Article  Google Scholar 

  37. H. Zhang, H. Wang, X. Zhu, Y.J. Qiu, K. Li, R. Chen, Q. Liao, Appl. Energy 112 (2013) 956–966.

    Article  Google Scholar 

  38. R. Heijungs, J.B. Guinee, Waste Manage. 27 (2007) 997–1005.

    Article  Google Scholar 

  39. G. Finnveden, Resourc. Conserv. Recycl. 26 (1999) 173–187.

    Article  Google Scholar 

  40. E. Dietzenbacher, Ecolog. Econ. 55 (2005) 11–23.

    Article  Google Scholar 

  41. A. Takayama, Mathematical economics, Cambridge University Press, New York, 1985.

    MATH  Google Scholar 

  42. R. Hoekstra, J.C.J.M. van den Bergh, Ecolog. Econ. 59 (2006) 375–393.

    Article  Google Scholar 

  43. G. Liu, Renew. Sust. Energ. Rev. 31 (2014) 611–621.

    Article  Google Scholar 

  44. H. Li, Y.M. Wei, Energy 83 (2015) 438–446.

    Article  Google Scholar 

  45. A.L. de Carvalho, C.H. Antunes, F. Freire, C. Henriques, Energy 82 (2015) 769–785.

    Article  Google Scholar 

  46. X. Jia, Z. Li, F. Wang, D.C.Y. Foo, R.R. Tan, Clean Technol. Environ. Policy 17 (2015) 2255–2265.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Science-Technology Plan Foundation of Hunan Province, China (2012GK2025) and by the Fundamental Research Funds for the Central South University under Grant Number 2013zzts039. The authors also wish to thank the Hunan Valin Xiangtan Iron and Steel Co., Ltd. for providing and verifying the production data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-jun Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Appendix: Embodied energy data of scope 1–3 used in case example

Appendix: Embodied energy data of scope 1–3 used in case example

Item

Unit

Embodied energy

Reference

Comments

Iron ores

MJ/t

153

[32]

The energy equivalent of iron ores varies with ore grades, mining technology etc. However, this value is still a good approximation if no other data are available, since the Australian iron ores are the major source for sintering in this integrated steel works

Limestone

MJ/t

67.9

Chinese life cycle Database (CLCD) [31]

Chinese LCI data

Burnt dolomite

GJ/t

4.5

Worldsteel [30]

Applicable if no other reliable data available

Burnt lime

GJ/t

4.5

Worldsteel

Ibid.

Pellets

GJ/t

2.1

Worldsteel

Ibid.

Pig iron

GJ/t

20.9

Worldsteel

Ibid.

Steel scrap

MJ/t

8.4

CLCD

Chinese LCI data

Electricity (coal)

GJ/MWh

9.41

National statistical report and standards

As suggested by national standard, the embodied energy of electricity is calculated based on coal consumption of electricity supply, i.e., 0.321 tce/MWh in the year 2013a

Washed coal

GJ/t

27.59

National statistical report and standards

Calculated based on China Statistical Yearbook (Using a conversion factor of 1.047 GJ/GJ)

Anthracite

GJ/t

21.9

National statistical report and standards

Ibid.

Coke

GJ/t

34.1

Worldsteel

Applicable if no other reliable data available

Oxygen

GJ/(103 m3 s.t.p.)

3.25

Site value

Data are sourced from supplier

Argon

GJ/(103 m3 s.t.p.)

15.82

Site value

Ibid.

Nitrogen

GJ/(103 m3 s.t.p.)

1.79

Site value

Ibid.

COG

GJ/(103 m3 s.t.p.)

17.06

Site value

Avoiding heat production through fossil fuels

BFG

GJ/(103 m3 s.t.p.)

3.70

Site value

Ibid.

BOF gas

GJ/(103 m3 s.t.p.)

6.25

Site value

Ibid.

BF slag

GJ/t

1.88b

Calculation based on Refs. [34] and [35]

Avoiding 0.9 tonne cement clinkers per tonne of BF slag

BOF slag

MJ/t

11.59

Ref. [33]

Avoiding production of aggregate. Here, we use energy consumption data of aggregate production in Serbia, since the local data are not found

Benzol

GJ/t

41.88

Site value

Avoiding Benzol production

Coal tar

GJ/t

37.69

Site value

Avoiding coal tar production

Ammonium sulfate

GJ/t

24.38

CLCD

Avoiding ammonium sulfate production

CDQ steam

GJ/GJ

1

 

Avoiding steam generation. Here we assume avoiding 1 GJ steam production with the same heat quality per GJ CDQ steam

Sinter steam

GJ/GJ

1

 

Ibid.

BOF 1 steam

GJ/GJ

1

 

Ibid.

BOF 2 steam

GJ/GJ

1

 

Ibid.

BOF 3 steam

GJ/GJ

1

 

Ibid.

Power plant steam

GJ/GJ

1

 

Ibid.

TRT electricity

GJ/MWh

9.41

National statistical report and standards

Avoiding electricity production

  1. aThe tce (tonne of standard coal equivalent) is an energy unit used in China, which is equal to 29.307 GJ
  2. bThe blast furnace slag is used to produce cement as substitution of cement clinkers produced with large rotary kiln. 1 kg of BFS is assumed to replace 0.9 kg cement clinkers. The embodied energy of cement clinkers is 3.84 GJ/t while the slag treatment process consumes 1.58 GJ energy per ton of BF slag. The net credit is therefore calculated as \(3.84 \times 0.9 - 1.58\), which is equal to 1.88 GJ per ton (BF slag)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xj., Liao, Sm., Rao, Zh. et al. An input–output model for energy accounting and analysis of industrial production processes: a case study of an integrated steel plant. J. Iron Steel Res. Int. 25, 524–538 (2018). https://doi.org/10.1007/s42243-018-0064-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0064-9

Keywords

Navigation