An input–output model for energy accounting and analysis of industrial production processes: a case study of an integrated steel plant

  • Xiao-jun Liu
  • Sheng-ming Liao
  • Zheng-hua Rao
  • Gang Liu
Original Paper


To promote sustainability, it has become increasingly vital to properly account material and energy flows in industrial production processes. Therefore, a generic process-level input–output (IO) model was developed to provide an integrated energy (material) accounting and analysis approach for industrial production processes. By extending the existing process-level IO models, the production, usage, export and loss of by-products were explicitly considered in the proposed IO model. Moreover, the by-products allocation procedures were incorporated into the proposed IO model to reflect individual contributions of products to energy consumption. Finally, the proposed model enabled calculating embodied energy of main products and total energy consumption under hierarchical accounting scope. Plant managers, energy management consultants, governmental officials and academic researchers could use this input–output model to account material and energy flows, thus calculating energy consumption indicators of a production process with their specific system boundary requirements. The accounting results could be further used for energy labeling, identifying bottlenecks of production activities, evaluating industrial symbiosis effects, improving materials and energy utilization efficiency, etc. The model could also be used as a planning tool to determine the effect that a particular change of technology and supply chains may have on the industrial production processes. The proposed model was tested and applied in a real integrated steel mill, which also provided the reference results for related researches. At last, some concepts, computational issues and limitations of the proposed model were discussed.


Input–output model Energy consumption Energy accounting Embodied energy Industrial production process Integrated steelmaking process 



The research was supported by the Science-Technology Plan Foundation of Hunan Province, China (2012GK2025) and by the Fundamental Research Funds for the Central South University under Grant Number 2013zzts039. The authors also wish to thank the Hunan Valin Xiangtan Iron and Steel Co., Ltd. for providing and verifying the production data.

Supplementary material

42243_2018_64_MOESM1_ESM.xlsx (19 kb)
Supplementary material 1 (XLSX 18 kb)


  1. [1]
    A.K. Bakthavatsalam, Energy Eng. 107 (2010) No. 4, 69–79.CrossRefGoogle Scholar
  2. [2]
    N. Ozalp, Int. J. Hydrogen Energy 33 (2008) 5020–5034.CrossRefGoogle Scholar
  3. [3]
    T. Gao, L. Shen, M. Shen, L. Liu, F. Chen, J. Clean. Prod. 112 (2016) 553–565.CrossRefGoogle Scholar
  4. [4]
    J. Laurijssen, A. Faaij, E. Worrell, Energy Efficiency 6 (2013) 49–63.CrossRefGoogle Scholar
  5. [5]
    E. Alkaya, G.N. Demirer, J. Clean. Prod. 65 (2014) 595–603.CrossRefGoogle Scholar
  6. [6]
    Z. Utlu, O. Kincay, Energy 57 (2013) 565–573.CrossRefGoogle Scholar
  7. [7]
    H.H. Kellogg, Metall. Mater. Trans. B 6 (1975) 77–81.CrossRefGoogle Scholar
  8. [8]
    M. Barati, Energy 35 (2010) 3731–3737.CrossRefGoogle Scholar
  9. [9]
    H.L. Xu, G.Y. Pan, Y.J. Shao, Energy Metall. Ind. 36 (2017) No. 2, 3–7.Google Scholar
  10. [10]
    ISO 14404-1, Calculation method of carbon dioxide emission intensity from iron and steel production-Part 1: Steel plant with blast furnace, 2013.Google Scholar
  11. [11]
    ISO 14404-2, Calculation method of carbon dioxide emission intensity from iron and steel production-Part 2: Steel plant with electric arc furnace (EAF), 2013.Google Scholar
  12. [12]
    R.E. Miller, P.D. Blair, Input-output analysis: foundations and extensions, Cambridge University Press, New York, 2009.CrossRefzbMATHGoogle Scholar
  13. [13]
    D. Cortés-Borda, G. Guillén-Gosálbez, L. Jiménez, Energy 91 (2015) 91–101.CrossRefGoogle Scholar
  14. [14]
    H. Liu, K.R. Polenske, J.J.M. Guilhoto, Energy 71 (2014) 414–420.CrossRefGoogle Scholar
  15. [15]
    B. Su, B.W. Ang, Appl. Energy 114 (2014) 377–384.CrossRefGoogle Scholar
  16. [16]
    S. Liang, C. Wang, T. Zhang, Ecolog. Econ. 69 (2010) 1805–1813.CrossRefGoogle Scholar
  17. [17]
    X. Lin, K.R. Polenske, Struct. Change Econ. Dyn. 9 (1998) 205–226.CrossRefGoogle Scholar
  18. [18]
    Z.W. Lu, J.J. Cai, The foundation of system energy conservation, Northeastern University Press, Shenyang, 2010.Google Scholar
  19. [19]
    K.R. Polenske, F.C. McMichael, Energ. Policy 30 (2002) 865–883.CrossRefGoogle Scholar
  20. [20]
    V. Albino, E. Dietzenbacher, S. Kühtz, Econ. Syst. Res. 15 (2003) 457–480.CrossRefGoogle Scholar
  21. [21]
    V. Albino, C. Izzo, S. Kühtz, Int. J. Prod. Econ. 78 (2002) 119–131.CrossRefGoogle Scholar
  22. [22]
    V. Albino, S. Kühtz, J. Environ. Inform. 1 (2003) 8–20.CrossRefGoogle Scholar
  23. [23]
    V. Albino, S. Kühtz, Resour. Conserv. Recycl. 41 (2004) 165–176.CrossRefGoogle Scholar
  24. [24]
    S. Kuhtz, C. Zhou, V. Albino, D.M. Yazan, Energy 35 (2010) 364–374.CrossRefGoogle Scholar
  25. [25]
    S. Liang, X.P. Jia, T.Z. Zhang, Clean Technol. Environ. Policy 13 (2011) 71–85.CrossRefGoogle Scholar
  26. [26]
    J. Ranganathan, L. Corbier, P. Bhatia, S. Schmitz, P. Gage, K. Oren, The greenhouse gas protocol: a corporate accounting and reporting standard (revised edition), World Resources Institute and World Business Council for Sustainable Development, Washington, DC, 2004.Google Scholar
  27. [27]
    ISO 14041, Environmental management - life cycle assessment - goal and scope definition and inventory analysis, 1998.Google Scholar
  28. [28]
    A.M. Tillman, T. Ekvall, H. Baumann, T. Rydberg, J. Clean. Prod. 2 (1994) 21–29.CrossRefGoogle Scholar
  29. [29]
    J. Jung, N. von der Assen, A. Bardow, Int. J. Life Cycle Assess. 18 (2013) 828–839.CrossRefGoogle Scholar
  30. [30]
    Worldsteel Association, CO2 emissions data collection (User Guide, version 6), 2012.Google Scholar
  31. [31]
    S.L. Liu, H.T. Wang, J. Chen, Q. He, H. Zhang, R. Jiang, X. Chen, P. Hou, Acta Sci. Circumst. 30 (2010) 2136–2144.Google Scholar
  32. [32]
    T. Norgate, N. Haque, J. Clean. Prod. 18 (2010) 266–274.CrossRefGoogle Scholar
  33. [33]
    S. Marinković, V. Radonjanin, M. Malešev, I. Ignjatović, Waste Manage. 30 (2010) 2255–2264.CrossRefGoogle Scholar
  34. [34]
    R. Jiang, H.T. Wang, H. Zhang, X. Chen, Acta Sci. Circumst. 30 (2010) 2361–2368.Google Scholar
  35. [35]
    C. Chen, G. Habert, Y. Bouzidi, A. Jullien, A. Ventura, Resourc. Conserv. Recycl. 54 (2010) 1231–1240.CrossRefGoogle Scholar
  36. [36]
    B. Yu, X. Li, L. Shi, Y. Qian, J. Clean. Prod. 103 (2015) 801–810.CrossRefGoogle Scholar
  37. [37]
    H. Zhang, H. Wang, X. Zhu, Y.J. Qiu, K. Li, R. Chen, Q. Liao, Appl. Energy 112 (2013) 956–966.CrossRefGoogle Scholar
  38. [38]
    R. Heijungs, J.B. Guinee, Waste Manage. 27 (2007) 997–1005.CrossRefGoogle Scholar
  39. [39]
    G. Finnveden, Resourc. Conserv. Recycl. 26 (1999) 173–187.CrossRefGoogle Scholar
  40. [40]
    E. Dietzenbacher, Ecolog. Econ. 55 (2005) 11–23.CrossRefGoogle Scholar
  41. [41]
    A. Takayama, Mathematical economics, Cambridge University Press, New York, 1985.zbMATHGoogle Scholar
  42. [42]
    R. Hoekstra, J.C.J.M. van den Bergh, Ecolog. Econ. 59 (2006) 375–393.CrossRefGoogle Scholar
  43. [43]
    G. Liu, Renew. Sust. Energ. Rev. 31 (2014) 611–621.CrossRefGoogle Scholar
  44. [44]
    H. Li, Y.M. Wei, Energy 83 (2015) 438–446.CrossRefGoogle Scholar
  45. [45]
    A.L. de Carvalho, C.H. Antunes, F. Freire, C. Henriques, Energy 82 (2015) 769–785.CrossRefGoogle Scholar
  46. [46]
    X. Jia, Z. Li, F. Wang, D.C.Y. Foo, R.R. Tan, Clean Technol. Environ. Policy 17 (2015) 2255–2265.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Xiao-jun Liu
    • 1
  • Sheng-ming Liao
    • 1
  • Zheng-hua Rao
    • 1
  • Gang Liu
    • 1
  1. 1.School of Energy Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations