Separation and comprehensive utilization of valuable elements in Ti-bearing electric arc furnace molten slag

  • Yang Li
  • Hai-yang Yu
  • Hua-mei Yang
  • Feng Zheng
  • Xiong Zhang
  • Bei-bei Xiong
  • Qiang Zhen
  • Hong-wei Ni
Original Paper


A novel route to comprehensive utilization of valuable elements such as Ti, Al, Si and Mg in Ti-bearing electric arc furnace molten slag (Ti-bearing EAF slag) was proposed. The route can be expressed as a three-step process including alkali fusion, water leaching and acidolysis. Following these processes under the optimum conditions, the recovery ratios of TiO2, Al2O3, SiO2 and MgO were about 97.5, 93.5, 27.9 and 53.5%, respectively. Meanwhile, nanostructured TiO2, NaA zeolite and Mg(OH)2 fire retardant were synthesized simultaneously by using Ti-bearing EAF slag as raw materials. In addition, the photocatalytic activity of prepared nanostructured TiO2 and the adsorption property of obtained NaA zeolite were investigated. The results showed that the photodegradation efficiency of as-prepared TiO2 was 80% for rhodamine B and the adsorption efficiency of NaA zeolite was 61% for Cu2+ under the optimum conditions.


Ti-bearing electric arc furnace molten slag Comprehensive utilization Valuable element TiO2 photocatalyst NaA zeolite Mg(OH)2 fire retardant 



This study was supported by the National Natural Science Foundation of China (Nos. 51471122 and 51604202), the China Postdoctoral Science Foundation (No. 2016M592397) and the Science and Technology Project of Guangdong Province (No. 2013B090600025).


  1. [1]
    X.F. Lei, X.X. Xue, Trans. Nonferrous Met. Soc. China 20 (2010) 2294–2298.CrossRefGoogle Scholar
  2. [2]
    S. Zhang, M.J. Nicol, Hydrometallurgy 103 (2010) 196–204.CrossRefGoogle Scholar
  3. [3]
    N. El-Hazek, T.A. Lasheen, R. El-Sheikh, S.A. Zaki, Hydrometallurgy 87 (2007) 45–50.CrossRefGoogle Scholar
  4. [4]
    A.J. Manhique, W.W. Focke, C. Madivate, Hydrometallurgy 109 (2011) 230–236.CrossRefGoogle Scholar
  5. [5]
    Y. Han, T. Sun, J. Li, T. Qi, L. Wang, J. Qu, Int. J. Miner. Metall. Mater. 19 (2012) 205–211.CrossRefGoogle Scholar
  6. [6]
    T. Tao, Q. Chen, H. Hu, Z. Yin, Y. Chen, Trans. Nonferrous Met. Soc. China 22 (2012) 1232–1238.CrossRefGoogle Scholar
  7. [7]
    L. Zhang, L.N. Zhang, M.Y. Wang, T.P. Lou, Z.T. Sui, J.S. Jang, J. Non-Cryst. Solids 352 (2006) 123–129.CrossRefGoogle Scholar
  8. [8]
    L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, Z.T. Sui, J. Non-Cryst. Solids 353 (2007) 2214–2220.Google Scholar
  9. [9]
    X.F. Lei, X.X. Xue, Mat. Sci. Semicond. Proc. 11 (2008) 117–121.CrossRefGoogle Scholar
  10. [10]
    Z.Z. Guo, T.P. Lou, L. Zhang, L.N. Zhang, Z.T. Sui, Acta Metall. Sin. Engl. Lett. 20 (2007) 9–14.CrossRefGoogle Scholar
  11. [11]
    M.Y. Wang, Y.H. He, X.W. Wang, T.P Lou, Z.T. Sui, Trans. Nonferrous Met. Soc. China 17 (2007) 584–588.Google Scholar
  12. [12]
    Y. Li, H. Yu, Y. Yang, F. Zheng, H. Ni, M. Zhang, M. Guo, Ceram. Int. 42 (2016) 11294–11302.CrossRefGoogle Scholar
  13. [13]
    L. Wu, X. Li, Z. Wang, H. Guo, X. Wang, F. Wu, J. Fang, Z. Wang, L. Li, J. Alloy. Compd. 506 (2010) 271–278.CrossRefGoogle Scholar
  14. [14]
    F. Wu, X. Li, Z. Wang, C. Xu, H. He, A. Qi, X. Yin, H. Guo, Hydrometallurgy 140 (2013) 82–88.CrossRefGoogle Scholar
  15. [15]
    X. Lei, X. Xue, H. Yang, Trans. Nonferrous Met. Soc. China 22 (2012) 1771–1777.CrossRefGoogle Scholar
  16. [16]
    Y. Li, L. Liu, M. Guo, M. Zhang, J. Environ. Sci. 47 (2016) 14–22.CrossRefGoogle Scholar
  17. [17]
    Y. Li, H.Y. Yu, Z.T. Zhang, M. Zhang, M. Guo, ISIJ Int. 55 (2015) 134–141.CrossRefGoogle Scholar
  18. [18]
    Y. Li, H. Ni, Y. Zhou, D. Li, F. Zheng, M. Zhang, M. Guo, Miner. Metall. Proc. 34 (2017) 44–52.Google Scholar
  19. [19]
    Y. Li, T.H. Peng, W.K. Man, L.C. Ju, F. Zheng, M. Zhang, M. Guo, RSC Adv. 6 (2016) 8267–8275.CrossRefGoogle Scholar
  20. [20]
    Y. Li, Y. Yang, M. Guo, M. Zhang, RSC Adv. 5 (2015) 13478–13487.CrossRefGoogle Scholar
  21. [21]
    Y. Li, Y. Yue, Z. Que, M. Zhang, M. Guo, Int. J. Miner. Metall. Mater. 20 (2013) 1012–1020.CrossRefGoogle Scholar
  22. [22]
    J. Yu, Q. Xiang, M. Zhou, Appl. Catal. B 90 (2009) 595–602.CrossRefGoogle Scholar
  23. [23]
    L. Zhang, Z. Wu, L. Chen, L. Zhang, X. Li, H. Xu, H. Wang, G. Zhu, Solid State Sci. 52 (2016) 42–48.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Yang Li
    • 1
  • Hai-yang Yu
    • 2
  • Hua-mei Yang
    • 1
  • Feng Zheng
    • 3
  • Xiong Zhang
    • 1
  • Bei-bei Xiong
    • 1
  • Qiang Zhen
    • 3
  • Hong-wei Ni
    • 1
  1. 1.The State Key Laboratory of Refractories and Metallurgy, School of Materials and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.Nano-science and Nano-technology Research Center, Materials Science and Engineering CollegeShanghai UniversityShanghaiChina

Personalised recommendations