Skip to main content
Log in

A Sustainable Method for Ti, Al and Mg Recovery from Titanium-Bearing Blast Furnace Slag Coupled with CO2 Sequestration by Leaching Residue

  • Reprocessing and Recycling of Tailings from Metallurgical Process
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A sustainable method for Ti, Al, and Mg recovery from titanium-bearing blast furnace slag (TBBFS) coupled with CO2 sequestration by leaching residue is proposed. The results show that the original mineral phase of the TBBFS could be destroyed by ammonium sulfate roasting, in which the valuable metals were converted to sulfates. Subsequently, Ti, Al, and Mg in the roasting slag were effectively extracted with dilute sulfuric acid leaching. The Ti, Al, and Mg in the solution could be separated and recovered by the stepwise hydrolysis method. The leaching residue was used for CO2 sequestration through the carbonation reaction. Under optimal conditions, the fractional conversion of calcium sulfate reached 98.83%, while an ammonium sulfate product was obtained. The proposed process achieves not only the recovery of Ti, Al, and Mg from the TBBFS but also the recycling of ammonia and sulfur based on the carbonation reaction of the leaching residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Zhou, T. Jiang, S. Yang, and X. Xue, Int. J. Miner. Process. 142, 125. https://doi.org/10.1016/j.minpro.2015.04.019 (2015).

    Article  Google Scholar 

  2. J. Yu, N. Hu, H. Xiao, P. Gao, and Y. Sun, Powder Technol. 385, 83. https://doi.org/10.1016/j.powtec.2021.02.038 (2021).

    Article  Google Scholar 

  3. M. Zhou, S.T. Yang, T. Jiang, and X.X. Xue, JOM-US 67, 1203. https://doi.org/10.1007/s11837-015-1326-7 (2015).

    Article  Google Scholar 

  4. G. Li, X.W. Lv, Z. Zheng, J.W. Ling, and G.B. Qiu, JOM-US 73, 316. https://doi.org/10.1007/s11837-020-04476-y (2021).

    Article  Google Scholar 

  5. W. Zhang, T. Zhang, T. Li, G. Lv, and X. Cao, J. Environ. Chem. Eng. 9, 104897. https://doi.org/10.1016/j.jece.2020.104897 (2021).

    Article  Google Scholar 

  6. W. Zhao, M. Chu, H. Wang, Z. Liu, J. Tang, and Z. Ying, Powder Technol. 342, 214. https://doi.org/10.1016/j.powtec.2018.09.069 (2019).

    Article  Google Scholar 

  7. G. Fan, M. Wang, J. Dang, R. Zhang, Z. Lv, W. He, and X. Lv, Waste Manag. 120, 626. https://doi.org/10.1016/j.wasman.2020.10.024 (2021).

    Article  Google Scholar 

  8. J. Ju, Y. Feng, H. Li, and C. Xu, Asia-Pac. J. Chem. Eng. 17, e2777. https://doi.org/10.1002/apj.2777 (2022).

    Article  Google Scholar 

  9. C. Wang, Y. Lei, W. Ma, and P. Qiu, J. Hazard. Mater. 401, 123446. https://doi.org/10.1016/j.jhazmat.2020.123446 (2021).

    Article  Google Scholar 

  10. S.K. Tripathy, J. Dasu, Y.R. Murthy, G. Kapure, A.R. Pal, and L.O. Filippov, J. Clean. Prod. 262, 121354. https://doi.org/10.1016/j.jclepro.2020.121354 (2020).

    Article  Google Scholar 

  11. L. Wang, W. Liu, J. Hu, Q. Liu, H. Yue, B. Liang, G. Zhang, D. Luo, H. Xie, and C. Li, Chin. J. Chem. Eng. 26, 583. https://doi.org/10.1016/j.cjche.2017.06.012 (2018).

    Article  Google Scholar 

  12. F. Zheng, Y. Guo, G. Qiu, F. Chen, S. Wang, Y. Sui, T. Jiang, and L. Yang, J. Hazard. Mater. 344, 490. https://doi.org/10.1016/j.jhazmat.2017.10.042 (2018).

    Article  Google Scholar 

  13. Z. Li, Y. Lei, W. Ma, Y. Zhang, and C. Wang, Sep. Purif. Technol. 265, 118473. https://doi.org/10.1016/j.seppur.2021.118473 (2021).

    Article  Google Scholar 

  14. H. Jiao, D. Tian, S. Wang, J. Zhu, and S. Jiao, J. Electrochem. Soc. 164, D511. https://doi.org/10.1149/2.0221709jes (2017).

    Article  Google Scholar 

  15. M. Lan, P. Rongxun, Y. Shaoli, and L. Binbin, Rare Metal. Mat. Eng. 47, 1411. https://doi.org/10.1016/S1875-5372(18)30143-7 (2018).

    Article  Google Scholar 

  16. Y. Du, J. Gao, X. Lan, and Z. Guo, J. Eur. Ceram. Soc. 42, 2055. https://doi.org/10.1016/j.jeurceramsoc.2021.12.047 (2022).

    Article  Google Scholar 

  17. M. Hu, R. Wei, Z. Qu, F. Yin, Y. Xu, and Q. Deng, Green Process. Synth. 5, 195. https://doi.org/10.1515/gps-2015-0092 (2016).

    Article  Google Scholar 

  18. X. Lei and X. Xue, Trans. Nonferr. Metal. Soc. 20, 2294. https://doi.org/10.1016/S1003-6326(10)60643-7 (2010).

    Article  Google Scholar 

  19. X.F. Lei and X.X. Xue, Mater. Chem. Phys. 112, 928. https://doi.org/10.1016/j.matchemphys.2008.06.065 (2008).

    Article  Google Scholar 

  20. Y. Wang, T. Qi, J. Chu, and W. Zhao, Rare Met. 29, 162. https://doi.org/10.1007/s12598-010-0028-0 (2010).

    Article  Google Scholar 

  21. X. Liu, G. Gai, Y. Yang, Z. Sui, L. Li, and J. Fu, Int. J. Min. Sci. Technol. 18, 275. https://doi.org/10.1016/S1006-1266(08)60058-9 (2008).

    Article  Google Scholar 

  22. Y. Lei, L. Sun, W. Ma, X. Ma, J. Wu, S. Li, and K. Morita, J. Alloys Compd. 769, 983. https://doi.org/10.1016/j.jallcom.2018.08.077 (2018).

    Article  Google Scholar 

  23. S. Zhu, J. Hu, C. Zhang, S. Li, and N. An, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2022.06.038 (2022).

    Article  Google Scholar 

  24. F. Cui, W. Mu, S. Wang, H. Xin, Q. Xu, Y. Zhai, and S. Luo, Miner. Eng. 123, 104. https://doi.org/10.1016/j.mineng.2018.04.013 (2018).

    Article  Google Scholar 

  25. G. Zhang, T. Hu, W. Liao, and X. Ma, J. Environ. Chem. Eng. 9, 105332. https://doi.org/10.1016/j.jece.2021.105332 (2021).

    Article  Google Scholar 

  26. J. Ju, Y. Feng, H. Li, R. Wu, and B. Wang, J. Environ. Chem. Eng. 10, 108153. https://doi.org/10.1016/j.jece.2022.108153 (2022).

    Article  Google Scholar 

  27. J. Li, Z. Chen, B. Shen, Z. Xu, and Y. Zhang, J. Clean. Prod. 140, 1148. https://doi.org/10.1016/j.jclepro.2016.10.050 (2017).

    Article  Google Scholar 

  28. X.Y. Shen, H.M. Shao, J.W. Ding, Y. Liu, H.M. Gu, and Y.C. Zhai, Int. J. Min. Met. Mater. 27, 1471. https://doi.org/10.1007/s12613-020-2015-2 (2020).

    Article  Google Scholar 

  29. G. Zhang, D. Luo, C. Deng, L. Lv, B. Liang, and C. Li, J. Alloys Compd. 742, 504. https://doi.org/10.1016/j.jallcom.2018.01.300 (2018).

    Article  Google Scholar 

  30. Q. Lin, G. Zhang, K. Wang, D. Luo, S. Tang, and H. Yue, Chin. J. Chem. Eng. https://doi.org/10.1016/j.cjche.2021.05.035 (2021).

    Article  Google Scholar 

  31. F. Liu, F. Chen, L. Wang, S. Ma, X. Wan, and J. Wang, Hydrometallurgy 203, 105626. https://doi.org/10.1016/j.hydromet.2021.105626 (2021).

    Article  Google Scholar 

  32. Y. Tang, X. Qu, B. Zhang, Y. Zhao, H. Xie, J. Zhao, Z. Ning, P. Xing, and H. Yin, J. Clean. Prod. 279, 123633. https://doi.org/10.1016/j.jclepro.2020.123633 (2021).

    Article  Google Scholar 

  33. O. Rahmani, J. CO2 Util. 24, 321. https://doi.org/10.1016/j.jcou.2018.01.020 (2018).

    Article  Google Scholar 

  34. J. Hu, W. Liu, L. Wang, Q. Liu, F. Chen, H. Yue, B. Liang, L. Lü, Y. Wang, G. Zhang, and C. Li, J. Energy Chem. 26, 927. https://doi.org/10.1016/j.jechem.2017.06.009 (2017).

    Article  Google Scholar 

  35. S. Lee, J.-W. Kim, S. Chae, J.-H. Bang, and S.-W. Lee, J. CO2 Util. 16, 336. https://doi.org/10.1016/j.jcou.2016.09.003 (2016).

    Article  Google Scholar 

  36. Q. Liu, W. Liu, J. Hu, L. Wang, J. Gao, B. Liang, H. Yue, G. Zhang, D. Luo, and C. Li, J. Clean. Prod. 197, 242. https://doi.org/10.1016/j.jclepro.2018.06.150 (2018).

    Article  Google Scholar 

  37. X. Xu, W. Liu, G. Chu, G. Zhang, D. Luo, H. Yue, B. Liang, and C. Li, Hydrometallurgy 184, 151. https://doi.org/10.1016/j.hydromet.2019.01.004 (2019).

    Article  Google Scholar 

  38. K.S. Lackner, Science 300, 1677. https://doi.org/10.1126/science.1079033 (2003).

    Article  Google Scholar 

  39. E.I. Nduagu, J. Highfield, J. Chen, and R. Zevenhoven, RSC Adv. 4, 64494. https://doi.org/10.1039/C4RA08925A (2014).

    Article  Google Scholar 

  40. H. Sheng, L. Lv, B. Liang, C. Li, B. Yuan, L. Ye, H. Yue, C. Liu, Y. Wang, J. Zhu, and H. Xie, Environ. Earth Sci. 73, 6871. https://doi.org/10.1007/s12665-015-4412-9 (2015).

    Article  Google Scholar 

  41. O. Rahmani, J. CO2 Util. 35, 265–271. https://doi.org/10.1016/j.jcou.2019.10.005 (2020).

    Article  Google Scholar 

  42. W. Liu, J. Hu, Q. Liu, and C. Li, Chin. J. Chem. Ind. Eng. Progress 40, 4624. https://doi.org/10.16085/j.issn.1000-6613.2020-1773 (2021).

    Article  Google Scholar 

  43. Z. Bian, Y. Feng, and H. Li, Trans. Nonferr. Metal. Soc. 30, 2836. https://doi.org/10.1016/S1003-6326(20)65425-5 (2020).

    Article  Google Scholar 

  44. H. Wu, Y. Feng, H. Li, S. He, and Z. Bian, Sci. Total Environ. 691, 9. https://doi.org/10.1016/j.scitotenv.2019.07.080 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by China Ocean Mineral Resources R&D Association under Grant Nos. JS-KTHT-2019-01 and DY135-B2-15.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yali Feng or Haoran Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, J., Feng, Y., Li, H. et al. A Sustainable Method for Ti, Al and Mg Recovery from Titanium-Bearing Blast Furnace Slag Coupled with CO2 Sequestration by Leaching Residue. JOM 75, 358–369 (2023). https://doi.org/10.1007/s11837-022-05484-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05484-w

Navigation