Skip to main content
Log in

Minimally invasive technology for continuous glucose monitoring

  • Perspective
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Chua B, Desai SP, Tierney MJ et al (2013) Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo. Sens Actuat A Phys 203:373–381. https://doi.org/10.1016/j.sna.2013.09.026

    Article  Google Scholar 

  2. Ribet F, Stemme G, Roxhed N (2018) Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed Microdev 20(4):101. https://doi.org/10.1007/s10544-018-0349-6

    Article  Google Scholar 

  3. Jin QC, Chen HJ, Li XL et al (2019) Reduced graphene oxide nanohybrid-assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing. Small 15(6):e1804298. https://doi.org/10.1002/smll.201804298

    Article  Google Scholar 

  4. Yu J, Wang J, Zhang Y et al (2020) Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng 4(5):499–506. https://doi.org/10.1038/s41551-019-0508-y

    Article  Google Scholar 

  5. Takeuchi K, Takama N, Kim B et al (2019) Microfluidic chip to interface porous microneedles for ISF collection. Biomed Microdev 21(1):28. https://doi.org/10.1007/s10544-019-0370-4

    Article  Google Scholar 

  6. Chen D, Wang C, Chen W et al (2015) PVDF-Nafion nanomembranes coated microneedles for in vivo transcutaneous implantable glucose sensing. Biosens Bioelectron 74:1047–1052. https://doi.org/10.1016/j.bios.2015.07.036

    Article  Google Scholar 

  7. Strambini LM, Longo A, Scarano S et al (2015) Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens Bioelectron 66:162–168. https://doi.org/10.1016/j.bios.2014.11.010

    Article  Google Scholar 

  8. Lee SJ, Yoon HS, Xuan X et al (2016) A patch type non-enzymatic biosensor based on 3D SUS micro-needle electrode array for minimally invasive continuous glucose monitoring. Sens Actuat B Chem 222:1144–1151. https://doi.org/10.1016/j.snb.2015.08.013

    Article  Google Scholar 

  9. Wang ZJ, Wang JQ, Kahkoska AR et al (2021) Developing insulin delivery devices with glucose responsiveness. Trends Pharmacol Sci 42(1):31–44. https://doi.org/10.1016/j.tips.2020.11.002

    Article  Google Scholar 

  10. Samavat S, Lloyd J, Odea L et al (2018) Uniform sensing layer of immiscible enzyme-mediator compounds developed via a spray aerosol mixing technique towards low cost minimally invasive microneedle continuous glucose monitoring devices. Biosens Bioelectron 118:224–230. https://doi.org/10.1016/j.bios.2018.07.054

    Article  Google Scholar 

  11. Yang J, Li Y, Ye R et al (2020) Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery. Microsyst Nanoeng 6:112. https://doi.org/10.1038/s41378-020-00224-z

    Article  Google Scholar 

  12. Mohan AMV, Windmiller JR, Mishra RK et al (2017) Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens Bioelectron 91:574–579. https://doi.org/10.1016/j.bios.2017.01.016

    Article  Google Scholar 

  13. Blicharz TM, Gong P, Bunner BM et al (2018) Microneedle-based device for the one-step painless collection of capillary blood samples. Nat Biomed Eng 2(3):151–157. https://doi.org/10.1038/s41551-018-0194-1

    Article  Google Scholar 

  14. Liu FM, Lin ZH, Jin QC et al (2019) Protection of nanostructures-integrated microneedle biosensor using dissolvable polymer coating. ACS Appl Mater Int 11(5):4809–4819. https://doi.org/10.1021/acsami.8b18981

    Article  Google Scholar 

  15. Li CG, Joung HA, Noh H et al (2015) One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15(16):3286–3292. https://doi.org/10.1039/c5lc00669d

    Article  Google Scholar 

  16. Jina A, Tierney MJ, Tamada JA et al (2014) Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J Diabetes Sci Technol 8(3):483–487. https://doi.org/10.1177/1932296814526191

    Article  Google Scholar 

  17. Yoon Y, Lee GS, Yoo K et al (2013) Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors 13(12):16672–16681. https://doi.org/10.3390/s131216672

    Article  Google Scholar 

  18. Ventrelli L, Marsilio Strambini L, Barillaro G (2015) Microneedles for transdermal biosensing: current picture and future direction. Adv Healthc Mater 4(17):2606–2640. https://doi.org/10.1002/adhm.201500450

    Article  Google Scholar 

  19. Kim M, Gu G, Cha KJ et al (2017) Wireless sEMG system with a microneedle-based high-density electrode array on a flexible substrate. Sensors 18(1):92. https://doi.org/10.3390/s18010092

    Article  Google Scholar 

  20. Chinnadayyala SR, Park I, Cho S (2018) Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Microchim Acta 185(5):250. https://doi.org/10.1007/s00604-018-2770-1

    Article  Google Scholar 

  21. Miller PR, Gittard SD, Edwards TL et al (2011) Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5(1):013415. https://doi.org/10.1063/1.3569945

    Article  Google Scholar 

  22. Valdes-Ramirez G, Li YC, Kim J et al (2014) Microneedle-based self-powered glucose sensor. Electrochem Commun 47:58–62. https://doi.org/10.1016/j.elecom.2014.07.014

    Article  Google Scholar 

  23. Bollella P, Sharma S, Cass AEG et al (2019) Minimally-invasive microneedle-based biosensor array for simultaneous lactate and glucose monitoring in artificial interstitial fluid. Electroanalysis 31(2):374–382. https://doi.org/10.1002/elan.201800630

    Article  Google Scholar 

  24. Yang JB, Zhang HX, Hu TL et al (2021) Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics, and bioinspired applications. Chem Eng J 426:130561. https://doi.org/10.1016/j.cej.2021.130561

    Article  Google Scholar 

  25. Derakhshandeh H, Aghabaglou F, Mccarthy A et al (2020) A wirelessly controlled smart bandage with 3D-printed miniaturized needle arrays. Adv Funct Mater 30(13):1905544. https://doi.org/10.1002/adfm.201905544

    Article  Google Scholar 

  26. Miller PR, Xiao X, Brener I et al (2014) Microneedle-based transdermal sensor for on-chip potentiometric determination of k+. Adv Healthc Mater 3(6):876–881. https://doi.org/10.1002/adhm.201300541

    Article  Google Scholar 

  27. Parrilla M, Cuartero M, Padrell Sanchez S et al (2019) Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection. Anal Chem 91(2):1578–1586. https://doi.org/10.1021/acs.analchem.8b04877

    Article  Google Scholar 

  28. Sharma S, Saeed A, Johnson C et al (2017) Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring. Sens Biosens Res 13:104–108. https://doi.org/10.1016/j.sbsr.2016.10.004

    Article  Google Scholar 

  29. Xie X, Doloff JC, Yesilyurt V et al (2018) Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat Biomed Eng 2(12):894–906. https://doi.org/10.1038/s41551-018-0273-3

    Article  Google Scholar 

  30. Wang LY, Xie SL, Wang ZY et al (2020) Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 4(2):159–171. https://doi.org/10.1038/s41551-019-0462-8

    Article  Google Scholar 

  31. Dervisevic M, Alba M, Yan L et al (2021) Transdermal electrochemical monitoring of glucose via high-density silicon microneedle array patch. Adv Funct Mater. https://doi.org/10.1002/adfm.202009850

    Article  Google Scholar 

  32. Li X, Huang X, Mo J et al (2021) A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv Sci 8(16):e2100827. https://doi.org/10.1002/advs.202100827

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the National Natural Science Foundation of China (Nos. 61771498, 61901535 and 81970778), Science and Technology Planning Project of Guangdong Province for Industrial Applications (No. 2017B090917001), Guangdong Province Key Area R&D Program (No. 2018B030332001), Science and Technology Program of Guangzhou, China (No. 202102080192), Guangdong Basic and Applied Basic Research Foundation (Nos. 2021A1515012261, 2019A1515012087, 2020A1515010987 and 2020A1515110424) and Key Program of Sun Yat-Sen University (No. 20lgzd14).

Author information

Authors and Affiliations

Authors

Contributions

XX conceived and supervised the study. XH and JY contributed to methodology and completed the original manuscript. SH and HC investigated the study. All authors contributed to writing review and editing.

Corresponding author

Correspondence to Xi Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yang, J., Huang, S. et al. Minimally invasive technology for continuous glucose monitoring. Bio-des. Manuf. 5, 9–13 (2022). https://doi.org/10.1007/s42242-021-00176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00176-x

Navigation