Skip to main content
Log in

Bilayer nicorandil-loaded small-diameter vascular grafts improve endothelial cell function via PI3K/AKT/eNOS pathway

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

For the surgical treatment of cardiovascular disease (CVD), there is a clear and unmet need in developing small-diameter (diameter < 6 mm) vascular grafts. In our previous work, sulfated silk fibroin (SF) was successfully fabricated as a potential candidate for preparing vascular grafts due to the great cytocompatibility and hemocompatibility. However, vascular graft with single layer is difficult to adapt to the complex internal environment. In this work, polycaprolactone (PCL) and sulfated SF were used to fabricate bilayer vascular graft (BLVG) to mimic the structure of natural blood vessels. To enhance the biological activity of BLVG, nicorandil (NIC), an FDA-approved drug with multi-bioactivity, was loaded in the BLVG to fabricate NIC-loaded BLVG. The morphology, chemical composition and mechanical properties of NIC-loaded BLVG were assessed. The results showed that the bilayer structure of NIC-loaded BLVG endowed the graft with a biphasic drug release behavior. The in vitro studies indicated that NIC-loaded BLVG could significantly increase the proliferation, migration and antioxidation capability of endothelial cells (ECs). Moreover, we found that the potential biological mechanism was the activation of PI3K/AKT/eNOS signaling pathway. Overall, the results effectively demonstrated that NIC-loaded BLVG had a promising in vitro performance as a functional small-diameter vascular graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ehrmann K, Potzmann P, Dworak C, Bergmeister H, Eilenberg M, Grasl C, Koch T, Schima H, Liska R, Baudis S (2020) Hard block degradable polycarbonate urethanes: promising biomaterials for electrospun vascular prostheses. Biomacromol 21(2):376–387. https://doi.org/10.1021/acs.biomac.9b01255

    Article  Google Scholar 

  2. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442. https://doi.org/10.1371/journal.pmed.0030442

    Article  Google Scholar 

  3. Bangalore S, Guo Y, Samadashvili Z, Blecker S, Xu J, Hannan EL (2015) Everolimus-eluting stents or bypass surgery for multivessel coronary disease. New Engl J Med 372(13):1213–1222. https://doi.org/10.1161/CIRCINTERVENTIONS.115.002626

    Article  Google Scholar 

  4. Wang Z, Mithieux SM, Weiss AS (2019) Fabrication techniques for vascular and vascularized tissue engineering. Adv Healthc Mater 8(19):1900742. https://doi.org/10.1002/adhm.201900742

    Article  Google Scholar 

  5. Wang Y, Ma B, Yin A, Zhang B, Luo R, Pan J, Wang Y (2020) Polycaprolactone vascular graft with epigallocatechin gallate embedded sandwiched layer-by-layer functionalization for enhanced antithrombogenicity and anti-inflammation. J Control Release 320:226–238. https://doi.org/10.1016/j.jconrel.2020.01.043

    Article  Google Scholar 

  6. Jin X, Geng X, Jia L, Xu Z, Ye L, Gu Y, Zhang AY, Feng ZG (2019) Preparation of small-diameter tissue-engineered vascular grafts electrospun from heparin end-capped PCL and evaluation in a rabbit carotid artery replacement model. Macromol Biosci 19(8):1900114. https://doi.org/10.1002/mabi.201900114

    Article  Google Scholar 

  7. Gimbrone Michael A, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118(4):620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

    Article  Google Scholar 

  8. Xie RY, Fang XL, Zheng XB, Lv WZ, Li YJ, Ibrahim Rage H, He QL, Zhu WP, Cui TX (2019) Salidroside and FG-4592 ameliorate high glucose-induced glomerular endothelial cells injury via HIF upregulation. Biomed Pharmacother 118:109175. https://doi.org/10.1016/j.biopha.2019.109175

    Article  Google Scholar 

  9. Zhang J, Shi J, Ma H, Liu L, He L, Qin C, Zhang D, Guo Y, Gong R (2020) The placental growth factor attenuates intimal hyperplasia in vein grafts by improving endothelial dysfunction. Eur J Pharmacol 868:172856. https://doi.org/10.1016/j.ejphar.2019.172856

    Article  Google Scholar 

  10. Chen CC, Hong HJ, Hao WR, Cheng TH, Liu JC, Sung LC (2019) Nicorandil prevents doxorubicin-induced human umbilical vein endothelial cell apoptosis. Eur J Pharmacol 859:172542. https://doi.org/10.1016/j.ejphar.2019.172542

    Article  Google Scholar 

  11. Umaru B, Pyriochou A, Kotsikoris V, Papapetropoulos A, Topouzis S (2015) ATP-sensitive potassium channel activation induces angiogenesis in vitro and in vivo. J Pharmacol Exp Ther 354(1):79–87. https://doi.org/10.1124/jpet.114.222000

    Article  Google Scholar 

  12. Serizawa K-i, Yogo K, Aizawa K, Tashiro Y, Ishizuka N (2011) Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats. Cardiovasc Diabetol 10(1):105. https://doi.org/10.1186/1475-2840-10-105

    Article  Google Scholar 

  13. Horinaka S, Kobayashi N, Yagi H, Mori Y, Matsuoka H (2006) Nicorandil but not ISDN upregulates endothelial nitric oxide synthase expression, preventing left ventricular remodeling and degradation of cardiac function in dahl salt-sensitive hypertensive rats with congestive heart failure. J Cardiovasc Pharmacol 47(5):629–635. https://doi.org/10.1097/01.fjc.0000211741.47960.c2

    Article  Google Scholar 

  14. Joo Myung L, Daiki K, Maki O, Mamoru T, Hiroaki T, Katsuhisa W, Tetsuya A, Akiyoshi K, Hiroki I, Woo-Hyun L, Joon-Hyung D, Chang-Wook N, Nobuhiro T, Bon-Kwon K, Nobukiyo T (2016) Safety and efficacy of intracoronary nicorandil as hyperaemic agent for invasive physiological assessment: a patient-level pooled analysis. EuroIntervention 12(2):208–215. https://doi.org/10.4244/EIJV12I2A34

    Article  Google Scholar 

  15. Mao D, Zhu M, Zhang X, Ma R, Yang X, Ke T, Wang L, Li Z, Kong D, Li C (2017) A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival. Acta Biomater 59:210–220. https://doi.org/10.1016/j.actbio.2017.06.039

    Article  Google Scholar 

  16. Raia NR, Jia D, Ghezzi CE, Muthukumar M, Kaplan DL (2020) Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials 233:119729. https://doi.org/10.1016/j.biomaterials.2019.119729

    Article  Google Scholar 

  17. Tozzi L, Laurent PA, Di Buduo CA, Mu X, Massaro A, Bretherton R, Stoppel W, Kaplan DL, Balduini A (2018) Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials 178:122–133. https://doi.org/10.1016/j.biomaterials.2018.06.018

    Article  Google Scholar 

  18. Rodriguez M, Kluge JA, Smoot D, Kluge MA, Schmidt DF, Paetsch CR, Kim PS, Kaplan DL (2020) Fabricating mechanically improved silk-based vascular grafts by solution control of the gel-spinning process. Biomaterials 230:119567. https://doi.org/10.1016/j.biomaterials.2019.119567

    Article  Google Scholar 

  19. Gupta P, Lorentz KL, Haskett DG, Cunnane EM, Ramaswamy AK, Weinbaum JS, Vorp DA, Mandal BB (2020) Bioresorbable silk grafts for small diameter vascular tissue engineering applications: in vitro and in vivo functional analysis. Acta Biomater 105:146–158. https://doi.org/10.1016/j.actbio.2020.01.020

    Article  Google Scholar 

  20. Li H, Wang Y, Sun X, Tian W, Xu J, Wang J (2019) Steady-state behavior and endothelialization of a silk-based small-caliber scaffold in vivo transplantation. Polymers (Basel) 11(8):1303. https://doi.org/10.3390/polym11081303

    Article  Google Scholar 

  21. Liu H, Li X, Zhou G, Fan H, Fan Y (2011) Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials 32(15):3784–3793. https://doi.org/10.1016/j.biomaterials.2011.02.002

    Article  Google Scholar 

  22. Liu H, Li X, Niu X, Zhou G, Li P, Fan Y (2011) Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds. Biomacromol 12(8):2914–2924. https://doi.org/10.1021/bm200479f

    Article  Google Scholar 

  23. Gong X, Liu H, Ding X, Liu M, Li X, Zheng L, Jia X, Zhou G, Zou Y, Li J, Huang X, Fan Y (2014) Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold. Biomaterials 35(17):4782–4791. https://doi.org/10.1016/j.biomaterials.2014.02.050

    Article  Google Scholar 

  24. Wu T, Zhang J, Wang Y, Li D, Sun B, El-Hamshary H, Yin M, Mo X (2018) Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl 82:121–129. https://doi.org/10.1016/j.msec.2017.08.072

    Article  Google Scholar 

  25. Yin A, Zhuang W, Liu G, Lan X, Tang Z, Deng Y, Wang Y (2020) Performance of PEGylated chitosan and poly (L-lactic acid-co-ε-caprolactone) bilayer vascular grafts in a canine femoral artery model. Colloids Surf B 188:110806. https://doi.org/10.1016/j.colsurfb.2020.110806

    Article  Google Scholar 

  26. Yan S, Napiwocki B, Xu Y, Zhang J, Zhang X, Wang X, Crone WC, Li Q, Turng L-S (2020) Wavy small-diameter vascular graft made of eggshell membrane and thermoplastic polyurethane. Mater Sci Eng C Mater Biol Appl 107:110311. https://doi.org/10.1016/j.msec.2019.110311

    Article  Google Scholar 

  27. Du H, Tao L, Wang W, Liu D, Zhang Q, Sun P, Yang S, He C (2019) Enhanced biocompatibility of poly(l-lactide-co-epsilon-caprolactone) electrospun vascular grafts via self-assembly modification. Mater Sci Eng C Mater Biol Appl 100:845–854. https://doi.org/10.1016/j.msec.2019.03.063

    Article  Google Scholar 

  28. Norouzi SK, Shamloo A (2019) Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Mater Sci Eng C Mater Biol Appl 94:1067–1076. https://doi.org/10.1016/j.msec.2018.10.016

    Article  Google Scholar 

  29. Gong W, Lei D, Li S, Huang P, Qi Q, Sun Y, Zhang Y, Wang Z, You Z, Ye X, Zhao Q (2016) Hybrid small-diameter vascular grafts: Anti-expansion effect of electrospun poly ε-caprolactone on heparin-coated decellularized matrices. Biomaterials 76:359–370. https://doi.org/10.1016/j.biomaterials.2015.10.066

    Article  Google Scholar 

  30. Seyed S, Zargarian V, Haddadi-Asl Z, Kafrashian M, Azarnia M (2018) Surfactant-assisted-water-exposed versus surfactant-aqueous-solution-exposed electrospinning of novel super hydrophilic polycaprolactone based fibers: analysis of drug release behavior. J Biomed Mater Res Part A 8:675–682. https://doi.org/10.1002/jbm.a.36575

    Article  Google Scholar 

  31. Barbara V, Silvia R, Giuseppina S, Maria C, Bonferoni G (2018) Coated electrospun alginate-containing fibers as novel delivery systems for regenerative purposes. Int J Nanomed 10:17–25. https://doi.org/10.2147/IJN.S175069

    Article  Google Scholar 

  32. Yang Y, Lei D, Zou H, Huang S, Yang Q, Li S, Qing FL, Ye X, You Z, Zhao Q (2019) Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia. Acta Biomater 97:321–332. https://doi.org/10.1016/j.actbio.2019.06.037

    Article  Google Scholar 

  33. Shi J, Zhang X, Jiang L, Zhang L, Dong Y, Midgley AC, Kong D, Wang S (2019) Regulation of the inflammatory response by vascular grafts modified with Aspirin-Triggered Resolvin D1 promotes blood vessel regeneration. Acta Biomater 97:360–373. https://doi.org/10.1016/j.actbio.2019.07.037

    Article  Google Scholar 

  34. Xing Z, Zhang C, Zhao C, Ahmad Z, Li JS, Chang MW (2018) Targeting oxidative stress using tri-needle electrospray engineered Ganoderma lucidum polysaccharide-loaded porous yolk-shell particles. Eur J Pharm Sci 125:64–73. https://doi.org/10.1016/j.ejps.2018.09.016

    Article  Google Scholar 

  35. Yao D, Peng G, Qian Z, Niu Y, Liu H, Fan Y (2017) Regulating coupling efficiency of REDV by controlling silk fibroin structure for vascularization. ACS Biomater Sci Eng 3:489–501. https://doi.org/10.1021/acsbiomaterials.7b00553

    Article  Google Scholar 

  36. Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K, Gao X, Li D, Li Y, Zheng X-L, Zhu Y, Kong D, Zhao Q (2014) The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35(22):5700–5710. https://doi.org/10.1016/j.biomaterials.2014.03.078

    Article  Google Scholar 

  37. Chatterjee S, Judeh ZMA (2015) Encapsulation of fish oil with N-stearoyl O-butylglyceryl chitosan using membrane and ultrasonic emulsification processes. Carbohydr Polym 123:432–442. https://doi.org/10.1016/j.carbpol.2015.01.072

    Article  Google Scholar 

  38. Moomand K, Lim LT (2014) Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Res Int 62:523–532. https://doi.org/10.1016/j.foodres.2014.03.054

    Article  Google Scholar 

  39. Singh B, Garg T, Goyal AK, Rath G (2016) Development, optimization, and characterization of polymeric electrospun nanofiber: a new attempt in sublingual delivery of nicorandil for the management of angina pectoris. Artif Cells Nanomed Biotechnol 44(6):1498–1507. https://doi.org/10.3109/21691401.2015.1052472

    Article  Google Scholar 

  40. Yao D, Qian Z, Zhou J, Peng G, Zhou G, Liu H, Fan Y (2018) Facile incorporation of REDV into porous silk fibroin scaffolds for enhancing vascularization of thick tissues. Mater Sci Eng C Mater Biol Appl 93:96–105. https://doi.org/10.1016/j.msec.2018.07.062

    Article  Google Scholar 

  41. Wei Y, Wu Y, Zhao R, Zhang K, Midgley AC, Kong D, Li Z, Zhao Q (2019) MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials 204:13–24. https://doi.org/10.1016/j.biomaterials.2019.01.049

    Article  Google Scholar 

  42. Liu Y, Xue X, Zhang H, Che X, Luo J, Wang P, Xu J, Xing Z, Yuan L, Liu Y, Fu X, Su D, Sun S, Zhang H, Wu C, Yang J (2019) Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy 15(3):493–509. https://doi.org/10.1080/15548627.2018.1531196

    Article  Google Scholar 

  43. Wang M, Wang Y, Chen Y, Gu H (2013) Improving endothelialization on 316L stainless steel through wettability controllable coating by sol–gel technology. Appl Surf Sci 268:73–78. https://doi.org/10.1016/j.apsusc.2012.11.159

    Article  Google Scholar 

  44. Lee JH, Lee SJ, Khang G, Lee HB (2000) The effect of fluid shear stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient. J Colloid Interface Sci 230(1):84–90. https://doi.org/10.1006/jcis.2000.7080

    Article  Google Scholar 

  45. Shi J, Chen S, Wang L, Zhang X, Gao J, Jiang L, Tang D, Zhang L, Midgley A, Kong D, Wang S (2019) Rapid endothelialization and controlled smooth muscle regeneration by electrospun heparin-loaded polycaprolactone/gelatin hybrid vascular grafts. J Biomed Mater Res Part B 107(6):2040–2049. https://doi.org/10.1002/jbm.b.34295

    Article  Google Scholar 

  46. Tseders ÉÉ, Purinya BA (1975) The mechanical properties of human blood vessels relative to their location. Polym Mech 11(2):271–275. https://doi.org/10.1007/BF00854734

    Article  Google Scholar 

  47. Ye P, Wei S, Luo C, Wang Q, Li A, Wei F (2020) Long-term effect against methicillin-resistant staphylococcus aureus of emodin released from coaxial electrospinning nanofiber membranes with a biphasic profile. Biomolecules 10(3):362. https://doi.org/10.3390/biom10030362

    Article  Google Scholar 

  48. Tort S, Han D, Steckl AJ (2020) Self-inflating floating nanofiber membranes for controlled drug delivery. Int J Pharm 579:119164. https://doi.org/10.1016/j.ijpharm.2020.119164

    Article  Google Scholar 

  49. Qu B, Yuan L, Yang L, Li J, Lv H, Yang X (2019) Polyurethane end-capped by tetramethylpyrazine-nitrone for promoting endothelialization under oxidative stress. Adv Healthc Mater 8(20):1900582. https://doi.org/10.1002/adhm.201900582

    Article  Google Scholar 

  50. Wang Z, Lu Y, Qin K, Wu Y, Tian Y, Wang J, Zhang J, Hou J, Cui Y, Wang K, Shen J, Xu Q, Kong D, Zhao Q (2015) Enzyme-functionalized vascular grafts catalyze in-situ release of nitric oxide from exogenous NO prodrug. J Control Release 210:179–188. https://doi.org/10.1016/j.jconrel.2015.05.283

    Article  Google Scholar 

  51. Yang J, Wei K, Wang Y, Li Y, Ding N, Huo D, Wang T, Yang G, Yang M, Ju T, Zeng W, Zhu C (2018) Construction of a small-caliber tissue-engineered blood vessel using icariin-loaded β-cyclodextrin sulfate for in situ anticoagulation and endothelialization. Sci China Life Sci 61(10):1178–1188. https://doi.org/10.1007/s11427-018-9348-9

    Article  Google Scholar 

  52. Guo X, Wang X, Li X, Jiang YC, Han S, Ma L, Guo H, Wang Z, Li Q (2020) Endothelial cell migration on poly(ε-caprolactone) nanofibers coated with a nanohybrid Shish–Kebab structure mimicking collagen fibrils. Biomacromol 21(3):1202–1213. https://doi.org/10.1021/acs.biomac.9b01638

    Article  Google Scholar 

  53. Wang Z, Zheng W, Wu Y, Wang J, Zhang X, Wang K, Zhao Q, Kong D, Ke T, Li C (2016) Differences in the performance of PCL-based vascular grafts as abdominal aorta substitutes in healthy and diabetic rats. Biomater Sci 4(10):1485–1492. https://doi.org/10.1039/C6BM00178E

    Article  Google Scholar 

  54. Xu X, Liu X, Yu L, Ma J, Yu S, Ni M (2020) Impact of intracoronary nicorandil before stent deployment in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Exp Ther Med 19(1):137–146. https://doi.org/10.3892/etm.2019.8219

    Article  Google Scholar 

  55. Yang HL, Korivi M, Chen CH, Peng WJ, Chen CS, Li ML, Hsu LS, Liao JW, Hseu YC (2017) Antrodia camphorata attenuates cigarette smoke-induced ROS production, DNA damage, apoptosis, and inflammation in vascular smooth muscle cells, and atherosclerosis in ApoE-deficient mice. Environ Toxicol 32(8):2070–2084. https://doi.org/10.1002/tox.22422

    Article  Google Scholar 

  56. Fojta M, Daňhel A, Havran L, Vyskočil V (2016) Recent progress in electrochemical sensors and assays for DNA damage and repair. TrAC Trends Anal Chem 79(5):160–167. https://doi.org/10.1016/j.trac.2015.11.018

    Article  Google Scholar 

  57. Carrizzo A, Conte Giulio M, Sommella E, Damato A, Ambrosio M, Sala M, Scala Maria C, Aquino Rita P, De Lucia M, Madonna M, Sansone F, Ostacolo C, Capunzo M, Migliarino S, Sciarretta S, Frati G, Campiglia P, Vecchione C (2019) Novel potent decameric peptide of spirulina platensis reduces blood pressure levels through a PI3K/AKT/eNOS-dependent mechanism. Hypertension 73(2):449–457. https://doi.org/10.1161/HYPERTENSIONAHA.118.11801

    Article  Google Scholar 

  58. Ahmad KA, Ze H, Chen J, Khan FU, Xuezhuo C, Xu J, Qilong D (2018) The protective effects of a novel synthetic β-elemene derivative on human umbilical vein endothelial cells against oxidative stress-induced injury: involvement of antioxidation and PI3k/Akt/eNOS/NO signaling pathways. Biomed Pharmacother 106:1734–1741. https://doi.org/10.1016/j.biopha.2018.07.107

    Article  Google Scholar 

  59. Wu Y, He MY, Ye JK, Ma SY, Huang W, Wei YY, Kong H, Wang H, Zeng XN, Xie WP (2017) Activation of ATP-sensitive potassium channels facilitates the function of human endothelial colony-forming cells via Ca2+/Akt/eNOS pathway. J Cell Mol Med 21(3):609–620. https://doi.org/10.1111/jcmm.13006

    Article  Google Scholar 

  60. Wang X, Pan J, Liu D, Zhang M, Li X, Tian J, Liu M, Jin T, An F (2019) Nicorandil alleviates apoptosis in diabetic cardiomyopathy through PI3K/Akt pathway. J Cell Mol Med 23(8):5349–5359. https://doi.org/10.1111/jcmm.14413

    Article  Google Scholar 

  61. Huang WC, Lai CL, Liang YT, Hung HC, Liou CJ (2016) Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways. Int Immunopharmacol 40:98–105. https://doi.org/10.1016/j.intimp.2016.08.035

    Article  Google Scholar 

  62. Gaafar AGA, Messiha BAS, Abdelkafy AML (2018) Nicorandil and theophylline can protect experimental rats against complete Freund’s adjuvant-induced rheumatoid arthritis through modulation of JAK/STAT/RANKL signaling pathway. Eur J Pharmacol 822:177–185. https://doi.org/10.1016/j.ejphar.2018.01.009

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771058, 32071359, 11421202, 61227902 and 11120101001), National Key Technology R&D Program (2016YFC1100704, 2016YFC1101101), International Joint Research Center of Aerospace Biotechnology and Medical Engineering from Ministry of Science and Technology of China, 111 Project (B13003), Research Fund for the Doctoral Program of Higher Education of China (20131102130004) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

ZX and HFL took part in conceptualization; ZX, CCZ and HFL contributed to methodology; ZX and CZ carried out investigation; ZX wrote the original draft; all authors wrote, reviewed and edited the final manuscirpt; HFL acquired funding; YBF and HFL contributed to resources; and HFL conducted supervision.

Corresponding author

Correspondence to Haifeng Liu.

Ethics declarations

Conflict of interest

Zheng Xing, Chen Zhao, Chunchen Zhang, Yubo Fan and Haifeng Liu declare that they have no conflict of interest.

Ethical approval

All the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Z., Zhao, C., Zhang, C. et al. Bilayer nicorandil-loaded small-diameter vascular grafts improve endothelial cell function via PI3K/AKT/eNOS pathway. Bio-des. Manuf. 4, 72–86 (2021). https://doi.org/10.1007/s42242-020-00107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00107-2

Keywords

Navigation