Skip to main content
Log in

Engineered hydrogels for brain tumor culture and therapy

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Brain tumors’ severity ranges from benign to highly aggressive and invasive. Bioengineering tools can assist in understanding the pathophysiology of these tumors from outside the body and facilitate development of suitable antitumoral treatments. Here, we first describe the physiology and cellular composition of brain tumors. Then, we discuss the development of three-dimensional tissue models utilizing brain tumor cells. In particular, we highlight the role of hydrogels in providing a biomimetic support for the cells to grow into defined structures. Microscale technologies, such as electrospinning and bioprinting, and advanced cellular models aim to mimic the extracellular matrix and natural cellular localization in engineered tumor tissues. Lastly, we review current applications and prospects of hydrogels for therapeutic purposes, such as drug delivery and co-administration with other therapies. Through further development, hydrogels can serve as a reliable option for in vitro modeling and treatment of brain tumors for translational medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from McNeill et al. [37]). b Multiple steps of metastatic colonization including pre-colonization phase, which occurs in minutes to hours, followed by colonization phase, which occurs in years. Pre-colonization steps include intravasation of cancer cells into the tumor vasculature, entry into the circulatory system, and extravasation into the parenchyma of target tissues or organs (Adapted from Massague et al. [40])

Fig. 2

(Adapted from Mao et al. [52]). b The glioma perivascular niche. Vascular endothelial cells provide chemotactic signals to migrating glioma cells in order to attract them to blood vessels. GSCs may also migrate to the site and differentiate to multiple cell types due to signals in the PVN (Adapted from Diksin et al. [56])

Fig. 3

(Adapted from Langhans et al. [58]). b Incorporation of brain glioblastoma spheroids within a microfluidic 3D culture platform of 96-well plates containing a tapered hole in the center of a rail for brain glioblastoma spheroids to generate angiogenic sprouting patterns (Adapted from Ko et al. [69]). c A 3D model generated by combination of transwell 96-well-plates and 96-well spheroid microplates to simulate penetration of anti-cancer drugs through the BBB (Adapted from Sherman et al. [71]). d Generation of brain organoids on a brain organoid-on-a-chip device to investigate the effect of nicotine on early brain development (Adapted from Wang et al. [74])

Fig. 4

(Adapted from Monzo et al. [111]). b Aligned PCL nanofibers promote directional contact guidance to glioma cells seeded on their surface, while randomly oriented fibers produce non-specific cell populations on their surface (Adapted from Agudelo-Garcia et al. [76]). c Microfluidic devices are compartmentalized and consist of wells which allow for GBM cell aggregation as the flow of media provides nutrients as cells proliferate (Adapted from Fan et al. [21]). d Bioprinting extrudes of alginate/gelatin/fibrin gel which encapsulates cells and causes them to grow in distinct arrays (Adapted from Wang et al. [112])

Fig. 5

(Adapted from Cha et al. [17])

Fig. 6

(Adapted from Li et al. [132] and Basso et al. [8]). b Insertion of a PCL/polyurethane carrier conduit containing aligned PCL nanofiber films, and cyclopamine (anti-cancer)-conjugated collagen hydrogel serving as an apoptotic tumor sink in the brain. Migration of tumor cells along the aligned films throughout the cross section of conduit was observed at different distances from the interface of the tumor in the brain (Adapted from Jain et al. [141]. c Stereotactical injection of drug-loaded magnetic hydrogel, and simultaneous magnetic resonance images of treated region over time by degradation of hydrogel and sustained release of drug (Adapted from Kim et al. [144])

Similar content being viewed by others

References

  1. Lu QR, Qian L, Zhou X (2019) Developmental origins and oncogenic pathways in malignant brain tumors. Wiley Interdiscip Rev Dev Biol 8(4):e342

    Google Scholar 

  2. Madhusoodanan S, Opler MG, Moise D, Gordon J, Danan DM, Sinha A, Babu RP (2010) Brain tumor location and psychiatric symptoms: is there any association? A meta-analysis of published case studies. Expert Rev Neurother 10(10):1529–1536

    Google Scholar 

  3. Perkins A, Liu G (2016) Primary brain tumors in adults: diagnosis and treatment. Am Fam Physician 93(3):211–217

    Google Scholar 

  4. Lefranc F, Sadeghi N, Camby I, Metens T, Dewitte O, Kiss R (2006) Present and potential future issues in glioblastoma treatment. Expert Rev Anticancer Ther 6(5):719–732

    Google Scholar 

  5. Puente P, Fettig N, Luderer MJ, Jin A, Shah S, Muz B, Kapoor V, Goddu SM, Salama NN, Tsien C, Thotala D, Shoghi K, Rogers B, Azab AK (2018) Injectable hydrogels for localized chemotherapy and radiotherapy in brain tumors. J Pharm Sci 107(3):922–933

    Google Scholar 

  6. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff R-O (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Google Scholar 

  7. Stupp R, Mason WP, van den Bent MJ, Weller M (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Google Scholar 

  8. Basso J, Miranda A, Nunes S, Cova T, Sousa J, Vitorino C, Pais A (2018) Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels. https://doi.org/10.3390/gels4030062

    Article  Google Scholar 

  9. von Eckardstein KL, Reszka R, Kiwit JC (2005) Intracavitary chemotherapy (paclitaxel/carboplatin liquid crystalline cubic phases) for recurrent glioblastoma—clinical observations. J Neurooncol 74(3):305–309

    Google Scholar 

  10. Fourniols T, Randolph LD, Staub A, Vanvarenberg K, Leprince JG, Preat V, des Rieux A, Danhier F (2015) Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma. J Control Release 210:95–104

    Google Scholar 

  11. Ong BY, Ranganath SH, Lee LY, Lu F, Lee HS, Sahinidis NV, Wang CH (2009) Paclitaxel delivery from PLGA foams for controlled release in post-surgical chemotherapy against glioblastoma multiforme. Biomaterials 30(18):3189–3196

    Google Scholar 

  12. Ranganath SH, Kee I, Krantz WB, Chow PK, Wang CH (2009) Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour chemotherapy. Pharm Res 26(9):2101–2114

    Google Scholar 

  13. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jääskeläinen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 5(2):79–88

    Google Scholar 

  14. Westphal M, Ram Z, Riddle V, Hilt D, Bortey E, Executive Committee of the Gliadel Study G (2006) Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien) 148(3):269–275

    Google Scholar 

  15. Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, Olivi A, Quinones-Hinojosa A, Brem H (2008) Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 15(10):2887–2893

    Google Scholar 

  16. Dai X, Ma C, Lan Q, Xu T (2016) 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication 8:045005

    Google Scholar 

  17. Cha J, Kim P (2017) Biomimetic strategies for the glioblastoma microenvironment. Front Mater 4:45

    Google Scholar 

  18. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414

    Google Scholar 

  19. Chen JE, Pedron S, Harley BAC (2017) The combined influence of hydrogel stiffness and matrix-bound hyaluronic acid content on glioblastoma invasion. Macromol Biosci 17(8):1700018

    Google Scholar 

  20. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224

    Google Scholar 

  21. Fan Y, Nguyen DT, Akay Y, Xu F, Akay M (2016) Engineering a brain cancer chip for high-throughput drug screening. Sci Rep 6:25062

    Google Scholar 

  22. Lee JM, Seo HI, Bae JH, Chung BG (2017) Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration. Electrophoresis 38(9–10):1318–1324

    Google Scholar 

  23. Sontheimer-Phelps A, Hassell BA, Ingber DE (2019) Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19(2):65–81

    Google Scholar 

  24. Pinezich MR, Russell LN, Murphy NP, Lampe KJ (2018) Encapsulated oligodendrocyte precursor cell fate is dependent on PDGF-AA release kinetics in a 3D microparticle-hydrogel drug delivery system. J Biomed Mater Res A 106(9):2402–2411

    Google Scholar 

  25. Saludas L, Pascual-Gil S, Prosper F, Garbayo E, Blanco-Prieto M (2017) Hydrogel based approaches for cardiac tissue engineering. Int J Pharm 523(2):454–475

    Google Scholar 

  26. Wang C, Tong X, Yang F (2014) Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol Pharm 11(7):2115–2125

    Google Scholar 

  27. Yang J, Sun X, Zhang Y, Chen Y (2020) The application of natural polymer–based hydrogels in tissue engineering. In: Chen Y (ed) Hydrogels based on natural polymers. Elsevier, Amsterdam, pp 273–307

    Google Scholar 

  28. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336(6085):1124–1128

    Google Scholar 

  29. Ananthanarayanan B, Kim Y, Kumar S (2011) Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32(31):7913–7923

    Google Scholar 

  30. Ulrich TA, Jain A, Tanner K, MacKay JL, Kumar S (2010) Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 31(7):1875–1884

    Google Scholar 

  31. ter Horst B, Moiemen NS, Grover LM (2019) Natural polymers: biomaterials for skin scaffolds. In: Garcia-Gareta E (ed) Biomaterials for skin repair and regeneration. Elsevier, pp 151–192

  32. Rape A, Ananthanarayanan B, Kumar S (2014) Engineering strategies to mimic the glioblastoma microenvironment. Adv Drug Deliv Rev 79–80:172–183

    Google Scholar 

  33. Xiao W, Ehsanipour A, Sohrabi A, Seidlits SK (2018) Hyaluronic-acid based hydrogels for 3-dimensional culture of patient-derived glioblastoma cells. J Vis Exp 138:58176

    Google Scholar 

  34. Kleihues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathol 3(3):255–268

    Google Scholar 

  35. Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54

    Google Scholar 

  36. Lukas L, Devos A, Suykens JA, Vanhamme L, Howe FA, Majos C, Moreno-Torres A, Van der Graaf M, Tate AR, Arus C, Van Huffel S (2004) Brain tumor classification based on long echo proton MRS signals. Artif Intell Med 31(1):73–89

    Google Scholar 

  37. McNeill KA (2016) Epidemiology of brain tumors. Neurol Clin 34(4):981–998

    Google Scholar 

  38. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS, Agnihotri S, Thompson YY, Kuzan-Fischer CM, Farooq H, Isaev K, Daniels C, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska WA, Perek-Polnik M, Vasiljevic A, Faure-Conter C, Jouvet A, Giannini C, Nageswara Rao AA, Li KKW, Ng HK, Eberhart CG, Pollack IF, Hamilton RL, Gillespie GY, Olson JM, Leary S, Weiss WA, Lach B, Chambless LB, Thompson RC, Cooper MK, Vibhakar R, Hauser P, van Veelen MC, Kros JM, French PJ, Ra YS, Kumabe T, Lopez-Aguilar E, Zitterbart K, Sterba J, Finocchiaro G, Massimino M, Van Meir EG, Osuka S, Shofuda T, Klekner A, Zollo M, Leonard JR, Rubin JB, Jabado N, Albrecht S, Mora J, Van Meter TE, Jung S, Moore AS, Hallahan AR, Chan JA, Tirapelli DPC, Carlotti CG, Fouladi M, Pimentel J, Faria CC, Saad AG, Massimi L, Liau LM, Wheeler H, Nakamura H, Elbabaa SK, Perezpena-Diazconti M, Ponce Chico, de Leon F, Robinson S, Zapotocky M, Lassaletta A, Huang A, Hawkins CE, Tabori U, Bouffet E, Bartels U, Dirks PB, Rutka JT, Bader GD, Reimand J, Goldenberg A, Ramaswamy V, Taylor MD (2017) Intertumoral Heterogeneity within medulloblastoma subgroups. Cancer Cell 31(6):737–754, e736

  39. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8(4):323–335

    Google Scholar 

  40. Massague J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306

    Google Scholar 

  41. Bradshaw A, Wickremesekera A, Brasch HD, Chibnall AM, Davis PF, Tan ST, Itinteang T (2016) Cancer stem cells in glioblastoma multiforme. Front Surg 3:48

    Google Scholar 

  42. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501

    Google Scholar 

  43. Gao YF, Zhu T, Chen J, Liu L, Ouyang R (2018) Knockdown of collagen alpha-1(III) inhibits glioma cell proliferation and migration and is regulated by miR128-3p. Oncol Lett 16(2):1917–1923

    Google Scholar 

  44. Mammoto T, Jiang A, Jiang E, Panigrahy D, Kieran MW, Mammoto A (2013) Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. Am J Pathol 183(4):1293–1305

    Google Scholar 

  45. Seano G (2018) Targeting the perivascular niche in brain tumors. Curr Opin Oncol 30(1):54–60

    Google Scholar 

  46. Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q (2013) Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 49(18):3914–3923

    Google Scholar 

  47. Charles N, Holland EC (2010) The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9(15):3012–3021

    Google Scholar 

  48. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    Google Scholar 

  49. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53

    Google Scholar 

  50. Das S, Marsden PA (2013) Angiogenesis in Glioblastoma. N Engl J Med 369(16):1561–1563

    Google Scholar 

  51. Sica G, Lama G, Anile C, Geloso MC, La Torre G, De Bonis P, Maira G, Lauriola L, Jhanwar-Uniyal M, Mangiola A (2010) Assessment of angiogenesis by CD105 and nestin expression in peritumor tissue of glioblastoma. Int J Oncol 38:41–49

    Google Scholar 

  52. Mao Y, Keller ET, Garfield DH, Shen K, Wang J (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32(1–2):303–315

    Google Scholar 

  53. Chen W, Wang D, Du X, He Y, Chen S, Shao Q, Ma C, Huang B, Chen A, Zhao P, Qu X, Li X (2015) Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med Oncol 32(3):43

    Google Scholar 

  54. Louveau A, Harris TH, Kipnis J (2015) Revisiting the mechanisms of CNS immune privilege. Trends Immunol 36(10):569–577

    Google Scholar 

  55. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    Google Scholar 

  56. Diksin M, Smith SJ, Rahman R (2017) The molecular and phenotypic basis of the glioma invasive perivascular niche. Int J Mol Sci 18(11):2342

    Google Scholar 

  57. Hopkins AM, DeSimone E, Chwalek K, Kaplan DL (2015) 3D in vitro modeling of the central nervous system. Prog Neurobiol 125:1–25

    Google Scholar 

  58. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6

    Google Scholar 

  59. Zhuang P, Sun AX, An J, Chua CK, Chew SY (2018) 3D neural tissue models: from spheroids to bioprinting. Biomaterials 154:113–133

    Google Scholar 

  60. Mansour AA, Goncalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH (2018) An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36(5):432–441

    Google Scholar 

  61. Palama IE, D’Amone S, Cortese B (2018) Microenvironmental rigidity of 3D scaffolds and influence on glioblastoma cells: a biomaterial design perspective. Front Bioeng Biotechnol 6:131

    Google Scholar 

  62. Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL (2018) Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 13(3):565–580

    Google Scholar 

  63. Razian G, Yu Y, Ungrin M (2013) Production of large numbers of size-controlled tumor spheroids using microwell plates. J Vis Exp 81:e50665

    Google Scholar 

  64. Nath S, Devi GR (2016) Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther 163:94–108

    Google Scholar 

  65. Engebraaten O, Bjerkvig R, Lund-Johansen M, Wester K, Pedersen P-H, Mork S, Backlund E-O, Laerum OD (1990) Interaction between human brain turnout biopsies and fetal rat brain tissue in vitro. Acta Neuropathol 81:130–140

    Google Scholar 

  66. Löhr M, Linsenmann T, Jawork A, Kessler AF, Timmermann N, Homola GA, Ernestus R-I, Hagemann C (2017) Implanting glioblastoma spheroids into rat brains and monitoring tumor growth by MRI volumetry. In: Zhang B (ed) RNAi and small regulatory RNAs in stem cells. Springer, pp 149–159

  67. Jensen SS, Meyer M, Petterson SA, Halle B, Rosager AM, Aaberg-Jessen C, Thomassen M, Burton M, Kruse TA, Kristensen BW (2016) Establishment and characterization of a tumor stem cell-based glioblastoma invasion model. PLoS ONE 11(7):e0159746

    Google Scholar 

  68. Eisemann T, Costa B, Strelau J, Mittelbronn M, Angel P, Peterziel H (2018) An advanced glioma cell invasion assay based on organotypic brain slice cultures. BMC Cancer 18(1):103

    Google Scholar 

  69. Ko J, Ahn J, Kim S, Lee Y, Lee J, Park D, Jeon NL (2019) Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip 19(17):2822–2833

    Google Scholar 

  70. Quereda V, Hou S, Madoux F, Scampavia L, Spicer TP, Duckett D (2018) A cytotoxic three-dimensional-spheroid, high-throughput assay using patient-derived glioma stem cells. SLAS Discov 23(8):842–849

    Google Scholar 

  71. Sherman H, Rossi AE (2019) A novel three-dimensional glioma blood-brain barrier model for high-throughput testing of tumoricidal capability. Front Oncol 9:351

    Google Scholar 

  72. Linkous A, Balamatsias D, Snuderl M, Edwards L, Miyaguchi K, Milner T, Reich B, Cohen-Gould L, Storaska A, Nakayama Y, Schenkein E, Singhania R, Cirigliano S, Magdeldin T, Lin Y, Nanjangud G, Chadalavada K, Pisapia D, Liston C, Fine HA (2019) Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep 26(12):3203–3211, e3205

    Google Scholar 

  73. Xiang Y, Tanaka Y, Cakir B, Patterson B, Kim K-Y, Sun P, Kang Y-J, Zhong M, Liu X, Patra P (2019) hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24(3):487–497

    Google Scholar 

  74. Wang Y, Wang L, Zhu Y, Qin J (2018) Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip 18(6):851–860

    Google Scholar 

  75. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Google Scholar 

  76. Agudelo-Garcia PA, De Jesus JK, Williams SP, Nowicki MO, Chiocca EA, Liyanarachchi S, Li PK, Lannutti JJ, Johnson JK, Lawler SE, Viapiano MS (2011) Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia 13(9):831–840

    Google Scholar 

  77. Liu CJ, Shamsan GA, Akkin T, Odde DJ (2019) Glioma cell migration dynamics in brain tissue assessed by multimodal optical imaging. Biophys J 117(7):1179–1188

    Google Scholar 

  78. Li X, Su X (2018) Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 6(29):4714–4730

    Google Scholar 

  79. Ostrovidov S, Sakai Y, Fujii T (2011) Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomed Microdevices 13(5):847–864

    Google Scholar 

  80. Bastiancich C, Bianco J, Vanvarenberg K, Ucakar B, Joudiou N, Gallez B, Bastiat G, Lagarce F, Preat V, Danhier F (2017) Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection. J Control Release 264:45–54

    Google Scholar 

  81. Zhao M, Danhier F, Bastiancich C, Joudiou N, Ganipineni LP, Tsakiris N, Gallez B, Rieux AD, Jankovski A, Bianco J, Preat V (2018) Post-resection treatment of glioblastoma with an injectable nanomedicine-loaded photopolymerizable hydrogel induces long-term survival. Int J Pharm 548(1):522–529

    Google Scholar 

  82. Blatchford DR, Quarrie LH, Tonner E, McCarthy C, Flint DJ, Wilde CJ (1999) Influence of microenvironment on mammary epithelial cell survival in primary culture. J Cell Physiol 181(2):304–311

    Google Scholar 

  83. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8–9):991–1007

    Google Scholar 

  84. Lin C-C, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26(3):631–643

    Google Scholar 

  85. Elliott JE, Macdonald M, Nie J, Bowman CN (2004) Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45(5):1503–1510

    Google Scholar 

  86. Noferini D, Faraone A, Rossi M, Mamontov E, Fratini E, Baglioni P (2019) Disentangling polymer network and hydration water dynamics in polyhydroxyethyl methacrylate physical and chemical hydrogels. J Phys Chem 123(31):19183–19194

    Google Scholar 

  87. Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356(6337):eaaf3627

    Google Scholar 

  88. Rao SS, Lannutti JJ, Viapiano MS, Sarkar A, Winter JO (2014) Toward 3D biomimetic models to understand the behavior of glioblastoma multiforme cells. Tissue Eng Part B Rev 20(4):314–327

    Google Scholar 

  89. van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE (2015) Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 19:1–12

    Google Scholar 

  90. Inal S, Hama A, Ferro M, Pitsalidis C, Oziat J, Iandolo D, Pappa A-M, Hadida M, Huerta M, Marchat D, Mailley P, Owens RM (2017) Conducting polymer scaffolds for hosting and monitoring 3D Cell culture. Adv Biosyst 1(6):1700052

    Google Scholar 

  91. ter Horst B, Moiemen NS, Grover LM (2019) Natural polymers. In: Garcia-Gareta E (ed) Biomaterials for skin repair and regeneration. pp 151–192

  92. Xiao W, Sohrabi A, Seidlits SK (2017) Integrating the glioblastoma microenvironment into engineered experimental models. Future Sci OA 3(3):FSO189

    Google Scholar 

  93. Vashist A, Vashist A, Gupta Y, Ahmad S (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2(2):147–166

    Google Scholar 

  94. Turabee MH, Jeong TH, Ramalingam P, Kang JH, Ko YT (2019) N, N, N-trimethyl chitosan embedded in situ Pluronic F127 hydrogel for the treatment of brain tumor. Carbohydr Polym 203:302–309

    Google Scholar 

  95. Oh Y, Cha J, Kang S-G, Kim P (2016) A polyethylene glycol-based hydrogel as macroporous scaffold for tumorsphere formation of glioblastoma multiforme. J Ind Eng Chem 39:10–15

    Google Scholar 

  96. Umesh V, Rape AD, Ulrich TA, Kumar S (2014) Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling. PLoS ONE 9(7):e101771

    Google Scholar 

  97. Kaufman LJ, Brangwynne CP, Kasza K, Filippidi E, Gordon VD, Deisboeck T, Weitz D (2005) Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. Biophys J 89(1):635–650

    Google Scholar 

  98. Chippada U, Yurke B, Langrana NA (2010) Simultaneous determination of Young’s modulus, shear modulus, and Poisson’s ratio of soft hydrogels. J Mater Res 25(3):545–555

    Google Scholar 

  99. Vichare S, Sen S, Inamdar MM (2014) Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM. Soft Matter 10(8):1174–1181

    Google Scholar 

  100. Heffernan JM, Overstreet DJ, Le LD, Vernon BL, Sirianni RW (2015) Bioengineered scaffolds for 3D analysis of glioblastoma proliferation and invasion. Ann Biomed Eng 43(8):1965–1977

    Google Scholar 

  101. Sunyer R, Jin AJ, Nossal R, Sackett DL (2012) Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PloS ONE 7(10):e46107

    Google Scholar 

  102. Chu C, Kong H (2012) Interplay of cell adhesion matrix stiffness and cell type for non-viral gene delivery. Acta Biomater 8(7):2612–2619

    Google Scholar 

  103. Kong HJ, Liu J, Riddle K, Matsumoto T, Leach K, Mooney DJ (2005) Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat Mater 4(6):460–464

    Google Scholar 

  104. Subramanian A, Lin HY (2005) Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation. J Biomed Mater Res A 75(3):742–753

    Google Scholar 

  105. Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials 32(16):3921–3930

    Google Scholar 

  106. Paz AC, Soleas J, Poon JC, Trieu D, Waddell TK, McGuigan AP (2014) Challenges and opportunities for tissue-engineering polarized epithelium. Tissue Eng Part B Rev 20(1):56–72

    Google Scholar 

  107. Hughes JH, Ewy JM, Chen J, Wong SY, Tharp KM, Stahl A, Kumar S (2019) Transcriptomic analysis reveals that BMP4 sensitizes glioblastoma tumor-initiating cells to mechanical cues. Matrix Biol 85–86:112–127

    Google Scholar 

  108. Shah S, Sasmal PK, Lee K-B (2014) Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery. J Mater Chem B 2(44):7685–7693

    Google Scholar 

  109. Park GK, Kim S-H, Kim K, Das P, Kim B-G, Kashiwagi S, Choi HS, Hwang NSJT (2019) Dual-channel fluorescence imaging of hydrogel degradation and tissue regeneration in the brain. Theranostics 9(15):4255

    Google Scholar 

  110. Kim JI, Chun C, Kim B, Hong JM, Cho JK, Lee SH, Song SC (2012) Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform. Biomaterials 33(1):218–224

    Google Scholar 

  111. Monzo P, Chong YK, Guetta-Terrier C, Krishnasamy A, Sathe SR, Yim EK, Ng WH, Ang BT, Tang C, Ladoux B, Gauthier NC, Sheetz MP (2016) Mechanical confinement triggers glioma linear migration dependent on formin FHOD3. Mol Biol Cell 27(8):1246–1261

    Google Scholar 

  112. Wang X, Li X, Dai X, Zhang X, Zhang J, Xu T, Lan Q (2018) Bioprinting of glioma stem cells improves their endotheliogenic potential. Colloids Surf B Biointerfaces 171:629–637

    Google Scholar 

  113. D’Arcangelo E, McGuigan AP (2015) Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. Biotechniques 58(1):13–23

    Google Scholar 

  114. Azioune A, Storch M, Bornens M, Thery M, Piel M (2009) Simple and rapid process for single cell micro-patterning. Lab Chip 9:1640–1642

    Google Scholar 

  115. Thery M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123(Pt 24):4201–4213

    Google Scholar 

  116. Endler EE, Nealey PF, Yin J (2005) Fidelity of micropatterned cell cultures. J Biomed Mater Res A 74(1):92–103

    Google Scholar 

  117. Guo Z, Hu K, Sun J, Zhang T, Zhang Q, Song L, Zhang X, Gu N (2014) Fabrication of hydrogel with cell adhesive micropatterns for mimicking the oriented tumor-associated extracellular matrix. ACS Appl Mater Interfaces 6(14):10963–10968

    Google Scholar 

  118. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Google Scholar 

  119. Long Y-Z, Yan X, Wang X-X, Zhang J, Yu M (2019) Electrospinning: the setup and procedure. In: Ding B, Wang X, Yu J (eds) Electrospinning: nanofabrication and applications, pp 21–52

  120. Beliveau A, Thomas G, Gong J, Wen Q, Jain A (2016) Aligned nanotopography promotes a migratory state in glioblastoma multiforme tumor cells. Sci Rep 6:26143

    Google Scholar 

  121. Bagó JR, Pegna GJ, Okolie O, Mohiti-Asli M, Loboa EG, Hingtgen SD (2016) Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials 90:116–125

    Google Scholar 

  122. Norouzi M (2018) Recent advances in brain tumor therapy: application of electrospun nanofibers. Drug Discov Today 23(4):912–919

    MathSciNet  Google Scholar 

  123. Rao SS, Nelson MT, Xue R, DeJesus JK, Viapiano MS, Lannutti JJ, Sarkar A, Winter JO (2013) Mimicking white matter tract topography using core-shell electrospun nanofibers to examine migration of malignant brain tumors. Biomaterials 34(21):5181–5190

    Google Scholar 

  124. Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, Britt CM, Hoilett OS, Yang Q, Brewer BM, Samson PC, McCawley LJ, May JM, Webb DJ, Li D, Bowman AB, Reiserer RS, Wikswo JP (2015) Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9(5):054124

    Google Scholar 

  125. Oddo A, Peng B, Tong Z, Wei Y, Tong WY, Thissen H, Voelcker NH (2019) Advances in microfluidic blood-brain barrier (BBB) models. Trends Biotechnol 37(12):1295–1314

    Google Scholar 

  126. Xu H, Li Z, Yu Y, Sizdahkhani S, Ho WS, Yin F, Wang L, Zhu G, Zhang M, Jiang L, Zhuang Z, Qin J (2016) A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep 6:36670

    Google Scholar 

  127. Terrell-Hall TB, Ammer AG, Griffith JI, Lockman PR (2017) Permeability across a novel microfluidic blood-tumor barrier model. Fluids Barriers CNS 14(1):3

    Google Scholar 

  128. Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S (2015) Bioprinting for cancer research. Trends Biotechnol 33(9):504–513

    Google Scholar 

  129. Lee VK, Dai G, Zou H, Yoo S-S (2015) Generation of 3-D glioblastoma-vascular niche using 3-D bioprinting. In: Paper presented at the 41st annual northeast biomedical engineering conference (NEBEC), Troy, NY, USA

  130. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2016) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol 18(suppl_5):v1–v75

    Google Scholar 

  131. Su J, Hu BH, Lowe WL Jr, Kaufman DB, Messersmith PB (2010) Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 31(2):308–314

    Google Scholar 

  132. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071

    Google Scholar 

  133. Alarcin E, Lee TY, Karuthedom S, Mohammadi M, Brennan MA, Lee DH, Marrella A, Zhang J, Syla D, Zhang YS, Khademhosseini A, Jang HL (2018) Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomater Sci 6(6):1604–1615

    Google Scholar 

  134. Avery RK, Albadawi H, Akbari M, Zhang YS, Duggan MJ, Sahani DV, Olsen BD, Khademhosseini A, Oklu R (2016) An injectable shear-thinning biomaterial for endovascular embolization. Sci Transl Med 8:1–12

    Google Scholar 

  135. Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A, Olsen BD (2014) Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8(10):9833–9842

    Google Scholar 

  136. Castro Dias M, Mapunda JA, Vladymyrov M, Engelhardt B (2019) Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int J Mol Sci 20(21):5372

    Google Scholar 

  137. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19(12):1584–1596

    Google Scholar 

  138. Vishnubhakthula S, Elupula R, Duran-Lara EF (2017) Recent advances in hydrogel-based drug delivery for melanoma cancer therapy: a mini review. J Drug Deliv 2017:7275985

    Google Scholar 

  139. Torres AJ, Zhu C, Shuler ML, Pannullo S (2011) Paclitaxel delivery to brain tumors from hydrogels: a computational study. Biotechnol Prog 27(5):1478–1487

    Google Scholar 

  140. Bastiancich C, Danhier P, Preat V, Danhier F (2016) Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release 243:29–42

    Google Scholar 

  141. Jain A, Betancur M, Patel GD, Valmikinathan CM, Mukhatyar VJ, Vakharia A, Pai SB, Brahma B, MacDonald TJ, Bellamkonda RV (2014) Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat Mater 13(3):308–316

    Google Scholar 

  142. Ozeki T, Hashizawa K, Kaneko D, Imai Y, Okada H (2010) Treatment of rat brain tumors using sustained-release of camptothecin from poly(lactic-co-glycolic acid) microspheres in a thermoreversible hydrogel. Chem Pharm Bull 58(9):1142–1147

    Google Scholar 

  143. Tyler B, Wadsworth S, Recinos V, Mehta V, Vellimana A, Li K, Rosenblatt J, Do H, Gallia GL, Siu IM, Wicks RT, Rudek MA, Zhao M, Brem H (2011) Local delivery of rapamycin: a toxicity and efficacy study in an experimental malignant glioma model in rats. Neuro Oncol 13(7):700–709

    Google Scholar 

  144. Kim JI, Kim B, Chun C, Lee SH, Song SC (2012) MRI-monitored long-term therapeutic hydrogel system for brain tumors without surgical resection. Biomaterials 33(19):4836–4842

    Google Scholar 

  145. Akhtar A (2015) The flaws and human harms of animal experimentation. Camb Q Healthc Ethics 24(4):407–419

    MathSciNet  Google Scholar 

  146. Ashby LS, Smith KA, Stea B (2016) Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol 14(1):225

    Google Scholar 

  147. Menei P, Capelle L, Guyotat J, Fuentes S, Assaker R, Bataille B, Francois P, Dorwling-Carter D, Paquis P, Bauchet L, Parker F, Sabatier J, Faisant N, Benoit JP (2005) Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of malignant glioma: a randomized phase II trial. Neurosurgery 56(2):242–248

    Google Scholar 

  148. Menei P, Jadaud E, Faisant N, Boisdron-Celle M, Michalak S, Fournier D, Delhaye M, Benoit JP (2004) Stereotaxic implantation of 5-fluorouracil-releasing microspheres in malignant glioma. Cancer 100(2):405–410

    Google Scholar 

  149. Pereira EAC, Grandidge CA, Nowak VA, Cudlip SA (2017) Cerebrospinal fluid leaks after transsphenoidal surgery—effect of a polyethylene glycol hydrogel dural sealant. J Clin Neurosci 44:6–10

    Google Scholar 

  150. Boogaarts JD, Grotenhuis JA, Bartels RH, Beems T (2005) Use of a novel absorbable hydrogel for augmentation of dural repair: results of a preliminary clinical study. Neurosurgery 57(1 Suppl):146–151

    Google Scholar 

  151. Kinaci A, Algra A, Heuts S, O’Donnell D, van der Zwan A, van Doormaal T (2018) Effectiveness of dural sealants in prevention of cerebrospinal fluid leakage after craniotomy: a systematic review. World Neurosurg 118(368–376):e361

    Google Scholar 

  152. Zanotto-Filho A, Braganhol E, Klafke K, Figueiro F, Terra SR, Paludo FJ, Morrone M, Bristot IJ, Battastini AM, Forcelini CM, Bishop AJR, Gelain DP, Moreira JCF (2015) Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett 358(2):220–231

    Google Scholar 

  153. Kotteas EA, Syrigos KN, Saif MW (2016) Profile of capecitabine/temozolomide combination in the treatment of well-differentiated neuroendocrine tumors. Onco Targets Ther 9:699–704

    Google Scholar 

  154. Owen DH, Alexander AJ, Konda B, Wei L, Hemminger JA, Schmidt CR, Abdel-Misih SR, Dillhoff ME, Sipos JA, Kirschner LS (2017) Combination therapy with capecitabine and temozolomide in patients with low and high grade neuroendocrine tumors, with an exploratory analysis of O6-methylguanine DNA methyltransferase as a biomarker for response. Oncotarget 8(61):104046

    Google Scholar 

  155. Ramirez RA, Boudreaux JP, Wang Y-Z, Beyer DT, Woltering E (2015) Combination capecitabine/temozolomide (CAPTEM) in patients with neuroendocrine tumors (NETs): a single institution review. J Clin Oncol 33(156):e15184–e15184

    Google Scholar 

  156. Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, Gururangan S, Friedman AH, Bigner DD, Sampson JH, McLendon RE, Herndon JE 2nd, Walker A, Friedman HS (2009) Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol 27(8):1262–1267

    Google Scholar 

  157. Rahman CV, Smith SJ, Morgan PS, Langmack KA, Clarke PA, Ritchie AA, Macarthur DC, Rose FR, Shakesheff KM, Grundy RG, Ruman R (2013) Adjuvant chemotherapy for brain tumors delivered via a novel intra-cavity moldable polymer matrix. PLoS ONE 8(10):e77435

    Google Scholar 

Download references

Acknowledgements

The authors have no competing interests. The authors also acknowledge funding from the National Institutes of Health (1U01CA214411-01A1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samad Ahadian or Ali Khademhosseini.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakor, J., Ahadian, S., Niakan, A. et al. Engineered hydrogels for brain tumor culture and therapy. Bio-des. Manuf. 3, 203–226 (2020). https://doi.org/10.1007/s42242-020-00084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00084-6

Keywords

Navigation